Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Amplitude

Aus Jewiki
Wechseln zu: Navigation, Suche

Amplitude ist ein Begriff aus der Physik, sowie der Technik zur Beschreibung von Schwingungen. Er ist anwendbar bei Größen wie beispielsweise einer Wechselspannung und deren Verlauf über der Zeit. Dabei wird er definiert als die maximale Auslenkung einer sinusförmigen Wechselgröße aus der Lage des arithmetischen Mittelwertes.[1][2][3] Gleichbedeutend ist die Bezeichnung Schwingungsweite. Der Begriff ist auch anwendbar auf Wellen, wenn sich die Schwingung mit einer konstanten Geschwindigkeit örtlich ausbreitet (Sinuswelle).[4]

Sinusförmige Wechselspannung:
1 = Amplitude,
2 = Spitze-Tal-Wert,
3 = Effektivwert,
4 = Periodendauer

In DIN 40110-1[3] wird unterschieden zwischen

  • Scheitelwert einer periodischen Wechselspannung und
  • Amplitude einer sinusförmigen Wechselspannung.

Für weitere Benennungen, die nicht auf Wechselgrößen beschränkt sind, aber allgemein für periodische Vorgänge verwendet werden, z. B. bei Mischspannung, siehe unter Scheitelwert.

Der Abstand zwischen Maximum und Minimum wird bei Schwingungen als Schwingungsbreite oder auch als Spitze-Tal-Wert bezeichnet[2][3] (früher als Spitze-Spitze-Wert).

Mathematische Darstellung

Eine ungedämpfte sinusförmige oder harmonische Schwingung wird durch

mit der Amplitude , Kreisfrequenz und Nullphasenwinkel beschrieben. Die Amplitude ist zeitunabhängig und damit konstant.

Eine andere Möglichkeit der Beschreibung ist die komplexe Darstellung mittels der Eulerschen Formel (mit dem in der Elektrotechnik üblichen Formelzeichen für die imaginäre Einheit[5]):

.

Diese Form erleichtert viele Berechnungen, siehe Komplexe Wechselstromrechnung. Der Ausdruck

ist die komplexe Amplitude, deren Betrag gleich der Amplitude und deren Argument gleich dem Nullphasenwinkel ist.

In bestimmten Zusammenhängen kann sich die Amplitude auch langsam gegenüber der zugehörigen Schwingung ändern, z. B. bei Dämpfung oder Modulation.

Eine schwach gedämpfte, nicht periodische Schwingung wird mit dem Abklingkoeffizienten durch

beschrieben.[2] Der Ausdruck

ist die zeitveränderliche Amplitudenfunktion.

Zur gezielten Beeinflussung der Amplitude siehe Amplitudenmodulation.

Beispiele

Gerne wird die Amplitude an mechanischen Beispielen veranschaulicht, insbesondere am Pendel.

Ein Federpendel führt im Idealfall (ungedämpft) eine Sinusschwingung aus. Die Distanz zwischen

  • dem Umkehrpunkt, in dem das Pendel die größte Auslenkung hat, und
  • dem Ruhepunkt, aus dem heraus das Pendel ohne Energiezufuhr keine Schwingung ausführen kann,

ist die Amplitude.

Ein ebenes Physikalisches Pendel schwingt auch bei ungedämpfter Bewegung weder im Winkel noch in der horizontalen Auslenkung sinusförmig. Die horizontale Distanz zwischen Umkehrpunkt und Ruhepunkt ist ein Scheitelwert. Nur bei geringer Auslenkung, wenn der Scheitelwert sehr viel kleiner ist als die Pendellänge, also wenn die Kleinwinkelnäherung angewendet werden kann, wird die Schwingung sinusförmig, und der Scheitelwert wird zur Amplitude.

Literatur

  • Ilja N. Bronstein, Konstantin A. Semendjaev, Gerhard Musiol, Heiner Mühlig: Taschenbuch der Mathematik. 5., überarbeitete und erweiterte Auflage, unveränderter Nachdruck. Harri Deutsch, Thun u. a. 2001, ISBN 3-8171-2005-2.
  • Christian Gerthsen: Physik, Springer-Verlag

Siehe auch

Weblinks

WiktionaryWiktionary: Amplitude – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. DIN 1311-1 (2000): Schwingungen und schwingungsfähige Systeme; (PDF).
  2. 2,0 2,1 2,2 DIN 5483-1 (1983): Zeitabhängige Größen
  3. 3,0 3,1 3,2 DIN 40110-1 (1994): Wechselstromgrößen
  4. DIN 1311-4 (1974): Schwingungslehre – Schwingende Kontinua, Wellen
  5. DIN 1302 (1999): Allgemeine mathematische Zeichen und Begriffe
Dieser Artikel basiert ursprünglich auf dem Artikel Amplitude aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.