Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Einschränkung

Aus Jewiki
Zur Navigation springen Zur Suche springen

In der Mathematik wird der Begriff Einschränkung meist für die Verkleinerung des Definitionsbereichs einer Funktion verwendet.

Auch für Relationen ist es möglich, die Einschränkung auf eine Teilmenge der Grundmenge zu betrachten.

Gelegentlich wird in mathematischen Beweisen die Formulierung „ohne Beschränkung der Allgemeinheit“ (o.B.d.A.) benutzt. Diese hat mit den hier erläuterten mathematischen Begriffen nichts zu tun.

Einschränkung einer Funktion

Definition

Ist eine beliebige Funktion und eine Teilmenge der Definitionsmenge , dann versteht man unter der Einschränkung von auf diejenige Funktion , die auf mit übereinstimmt. Mit Hilfe der Inklusionsabbildung lässt sich die Einschränkung kurz schreiben als

.

In der Situation nennt man auch eine Fortsetzung von . In der Mengenlehre wird auch die Schreibweise statt verwendet.

Beispiel

sei die Menge der reellen Zahlen und mit die Quadratfunktion. ist nicht injektiv, die Einschränkung auf das Intervall der nichtnegativen reellen Zahlen ist dies aber schon. Wenn man auch noch die Zielmenge auf die Bildmenge (ebenfalls ) einschränkt, erhält man die bijektive Quadratfunktion mit , die also eine Umkehrfunktion hat, nämlich die Quadratwurzelfunktion.

Einschränkung einer Relation

Ist R eine zweistellige Relation auf der Menge A und X eine Teilmenge von A, dann ist die Relation S auf X die Einschränkung von R auf X, wenn für alle a und b aus X gilt:

.

Beispiel

Die Kleiner-Relation auf der Menge der ganzen Zahlen ist die Einschränkung der Kleiner-Relation auf der Menge der rationalen Zahlen.

Dieser Artikel basiert ursprünglich auf dem Artikel Einschränkung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.