Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Variationsrechnung

Aus Jewiki
Zur Navigation springen Zur Suche springen

Die Variationsrechnung ist eine Sparte der Mathematik, die um die Mitte des 18. Jahrhunderts insbesondere von Leonhard Euler und Joseph-Louis Lagrange entwickelt wurde.[1]

Zentrales Element der Variationsrechnung bildet die Euler-Lagrange-Gleichung

die für gerade zur Lagrange-Gleichung aus der klassischen Mechanik wird.

Grundlagen

Die Variationsrechnung beschäftigt sich mit reellen Funktionen von Funktionen, die auch Funktionale genannt werden. Solche Funktionale können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionen, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt, man nennt sie Extremale. Einige klassische Probleme können elegant mit Hilfe von Funktionalen formuliert werden.

Das Schlüsseltheorem der Variationsrechnung ist die Euler-Lagrange-Gleichung, genauer „Euler-Lagrange'sche Differentialgleichung“. Diese beschreibt die Stationaritätsbedingung eines Funktionals. Wie bei der Aufgabe, die Maxima und Minima einer Funktion zu bestimmen, wird sie aus der Analyse kleiner Änderungen um die angenommene Lösung hergeleitet. Die Euler-Lagrangesche Differentialgleichung ist lediglich eine notwendige Bedingung. Weitere notwendige Bedingungen für das Vorliegen einer Extremalen lieferten Adrien-Marie Legendre und Alfred Clebsch sowie Carl Gustav Jacob Jacobi. Eine hinreichende, aber nicht notwendige Bedingung stammt von Karl Weierstraß.

Die Methoden der Variationsrechnung tauchen bei den Hilbertraum-Techniken, der Morsetheorie und bei der symplektischen Geometrie auf. Der Begriff Variation wird für alle Extremal-Probleme von Funktionen verwendet. Geodäsie und Differentialgeometrie sind Bereiche der Mathematik, in denen Variationen eine Rolle spielen. Besonders am Problem der minimalen Oberflächen, die etwa bei Seifenblasen auftreten, wurde viel gearbeitet.

Anwendungsgebiete

Die Variationsrechnung ist die mathematische Grundlage aller physikalischen Extremalprinzipien und deshalb besonders in der theoretischen Physik wichtig, so etwa im Lagrange-Formalismus der klassischen Mechanik bzw. der Bahnbestimmung, in der Quantenmechanik in Anwendung des Prinzips der kleinsten Wirkung und in der statistischen Physik im Rahmen der Dichtefunktionaltheorie. In der Mathematik wurde die Variationsrechnung beispielsweise bei der riemannschen Behandlung des Dirichlet-Prinzips für harmonische Funktionen verwendet. Auch in der Steuerungs- und Regelungstheorie findet die Variationsrechnung Anwendung, wenn es um die Bestimmung von Optimalreglern geht.

Ein typisches Anwendungsbeispiel ist das Brachistochronenproblem: Auf welcher Kurve in einem Schwerefeld von einem Punkt A zu einem Punkt B, der unterhalb, aber nicht direkt unter A liegt, benötigt ein Objekt die geringste Zeit zum Durchlaufen der Kurve? Von allen Kurven zwischen A und B minimiert eine den Ausdruck, der die Zeit des Durchlaufens der Kurve beschreibt. Dieser Ausdruck ist ein Integral, das die unbekannte, gesuchte Funktion, die die Kurve von A nach B beschreibt, und deren Ableitungen enthält.

Ein Hilfsmittel aus der Analysis reeller Funktionen in einer reellen Veränderlichen

Im Folgenden wird eine wichtige Technik der Variationsrechnung demonstriert, bei der eine notwendige Aussage für eine lokale Minimumstelle einer reellen Funktion mit nur einer reellen Veränderlichen in eine notwendige Aussage für eine lokale Minimumstelle eines Funktionals übertragen wird. Diese Aussage kann dann oftmals zum Aufstellen beschreibender Gleichungen für stationäre Funktionen eines Funktionals benutzt werden.

Sei ein Funktional auf einem Funktionenraum gegeben ( muss mind. ein topologischer Raum sein). Das Funktional habe an der Stelle ein lokales Minimum.

Durch den folgenden einfachen Trick tritt an die Stelle des „schwierig handhabbaren“ Funktionals eine reelle Funktion , die nur von einem reellen Parameter abhängt „und entsprechend einfacher zu behandeln ist“.

Mit einem sei eine beliebige stetig durch den reellen Parameter parametrisierte Familie von Funktionen . Dabei sei die Funktion (d. h., für ) gerade gleich der stationären Funktion . Außerdem sei die durch die Gleichung

definierte Funktion an der Stelle differenzierbar.

Die stetige Funktion nimmt dann an der Stelle ein lokales Minimum an, da ein lokales Minimum von ist.

Aus der Analysis für reelle Funktionen in einer reellen Veränderlichen ist bekannt, dass dann gilt. Auf das Funktional übertragen heißt das

Beim Aufstellen der gewünschten Gleichungen für stationäre Funktionen wird dann noch ausgenutzt, dass die vorstehende Gleichung für jede beliebige („gutartige“) Familie mit gelten muss.

Das soll im nächsten Abschnitt anhand der Euler-Gleichung demonstriert werden.

Euler-Lagrange-Gleichung; Variationsableitung; weitere notwendige bzw. hinreichende Bedingungen

Gegeben seien zwei Zeitpunkte mit und eine in allen Argumenten zweifach stetig differenzierbare Funktion, die Lagrangefunktion

Beispielsweise ist bei der Lagrangefunktion des freien relativistischen Teilchens mit Masse und

das Gebiet das kartesische Produkt von und dem Inneren der Einheitskugel.

Als Funktionenraum wird die Menge aller zweifach stetig differenzierbaren Funktionen

gewählt, die zum Anfangszeitpunkt und zum Endzeitpunkt die fest vorgegebenen Orte bzw. einnehmen:

und deren Werte zusammen mit den Werten ihrer Ableitung in liegen,

.

Mit der Lagrangefunktion wird nun das Funktional , die Wirkung, durch

definiert. Gesucht ist diejenige Funktion , die die Wirkung minimiert.

Entsprechend der im vorhergehenden Abschnitt vorgestellten Technik untersuchen wir dazu alle differenzierbaren einparametrigen Familien , die für durch die stationäre Funktion des Funktionals gehen (es gilt also ). Genutzt wird die im letzten Abschnitt hergeleitete Gleichung

Hereinziehen der Differentiation nach dem Parameter in das Integral liefert mit der Kettenregel

Dabei stehen für die Ableitungen nach dem zweiten bzw. dritten Argument und für die partielle Ableitung nach dem Parameter .

Es wird sich später als günstig erweisen, wenn im zweiten Integral statt wie im ersten Integral steht. Das erreicht man durch partielle Integration:

An den Stellen und gelten unabhängig von die Bedingungen und . Ableiten dieser beiden Konstanten nach liefert . Deshalb verschwindet der Term und man erhält nach Zusammenfassen der Integrale und Ausklammern von die Gleichung

und mit

Außer zum Anfangszeitpunkt und zum Endzeitpunkt unterliegt keinen Einschränkungen. Damit sind die Zeitfunktionen bis auf die Bedingungen beliebige zweimal stetig differenzierbare Zeitfunktionen. Die letzte Gleichung kann also nur dann für alle zulässigen erfüllt sein, wenn der Faktor im gesamten Integrationsintervall gleich null ist (das wird in den Bemerkungen etwas detaillierter erläutert). Damit erhält man für die stationäre Funktion die Euler-Lagrange-Gleichung

die für alle erfüllt sein muss.

Die angegebene, zum Verschwinden zu bringende Größe bezeichnet man auch als Eulerableitung der Lagrangefunktion

Vor allem in Physikbüchern wird die Ableitung als Variation bezeichnet. Dann ist die Variation von Die Variation der Wirkung

ist wie bei eine Linearform in den Variationen der Argumente, ihre Koeffizienten heißen Variationsableitung des Funktionals Sie ist im betrachteten Fall die Eulerableitung der Lagrangefunktion

Bemerkungen

Die Funktion für und

Bei der Herleitung der Euler-Lagrange-Gleichung wurde benutzt, dass eine stetige Funktion , die für alle mindestens zweimal stetig differenzierbaren Funktionen mit bei Integration über

den Wert null ergibt, identisch gleich null sein muss.

Das ist leicht einzusehen, wenn man berücksichtigt, dass es zum Beispiel mit

eine zweimal stetig differenzierbare Funktion gibt, die in einer -Umgebung eines willkürlich herausgegriffenen Zeitpunktes positiv und ansonsten null ist. Gäbe es eine Stelle , an der die Funktion größer oder kleiner null wäre, so wäre sie aufgrund der Stetigkeit auch noch in einer ganzen Umgebung dieser Stelle größer bzw. kleiner null. Mit der eben definierten Funktion ist dann jedoch das Integral im Widerspruch zur Voraussetzung an ebenfalls größer bzw. kleiner null. Die Annahme, dass an einer Stelle ungleich null wäre, ist also falsch. Die Funktion ist also wirklich identisch gleich null.

Ist der Funktionenraum ein affiner Raum, so wird die Familie in der Literatur oftmals als Summe mit einer frei wählbaren Zeitfunktion festgelegt, die der Bedingung genügen muss. Die Ableitung ist dann gerade die Gateaux-Ableitung des Funktionals an der Stelle in Richtung . Die hier vorgestellte Version erscheint dem Autor etwas günstiger, wenn die Funktionenmenge kein affiner Raum mehr ist (wenn sie beispielsweise durch eine nichtlineare Nebenbedingung eingeschränkt ist; siehe etwa gaußsches Prinzip des kleinsten Zwanges). Sie ist ausführlicher in [2] dargestellt und lehnt sich an die Definition von Tangentialvektoren an Mannigfaltigkeiten an (siehe auch [3]).

Siehe auch

Einzelnachweise

  1. Brachistochrone problem
  2. W. I. Smirnow: Lehrgang der höheren Mathematik, Teil (IV/1). 17. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1990.
  3. H. Fischer, H. Kaul: Mathematik für Physiker, Band 3. 2. Auflage. Teubner Verlag, Wiesbaden 2006, ISBN 3-8351-0031-9.

Literatur

  • Oskar Bolza: Vorlesungen Uber Variationsrechnung. B. G. Teubner, Leipzig 1909.
  • Paul Funk: Variationsrechnung und ihre Anwendung in Physik und Technik. 2. Auflage. Berlin 1970.
  • Adolf Kneser: Variationsrechnung. In: Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen Zweiter Band, Erster Teil. B. G. Teubner, Leipzig 1898, S. 571.
  • Michael Plail: Die Entwicklung der optimalen Steuerungen. Göttingen, 1998.
  • J. N. Reddy: Energy Principles And Variational Methods In Applied Mechanics. Second Edition. Wiley & Sons 2002, ISBN 978-0-471-17985-6.
  • Paul Staeckel: Abhandlungen über variations-rechnung. W. Engelmann, Leipzig 1894.
Dieser Artikel basiert ursprünglich auf dem Artikel Variationsrechnung aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.