Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Rotationsfläche

Aus Jewiki
Zur Navigation springen Zur Suche springen
Rotation eines cos-Bogens (s.u.)
Torus als Rotationsfläche

Eine Rotationsfläche oder Drehfläche ist in der Geometrie eine Fläche, die durch Rotation einer ebenen Kurve, dem Hauptmeridian, um eine in derselben Ebene liegenden Gerade, der Rotationsachse, entsteht. Ein einfaches Beispiel ist ein gerader Kreiskegel. Er entsteht durch Rotation einer Gerade um eine sie schneidende Rotationsachse. Weitere einfache Beispiele sind: gerader Kreiszylinder (Rotation einer Gerade um eine dazu parallele Achse), Kugel (Rotation eines Kreises um einen Durchmesser) und Torus (Rotation eines die Achse nicht schneidenden Kreises). Rotationsflächen haben gegenüber anderen Flächen besondere Eigenschaften:

  • Rotationsflächen sind rotationssymmetrisch, d. h. die wesentlichen geometrischen Informationen sind schon im Hauptmeridian enthalten. Sie haben deswegen relativ einfache analytische Beschreibungen.
  • Ein Schnitt mit einer beliebigen Ebene, die die Rotationsachse enthält, heißt Meridian und ist immer kongruent zum Hauptmeridian.
  • Ein Querschnitt, d.h. ein ebener Schnitt mit einer Ebene senkrecht zur Rotationsachse, ist immer ein Kreis und heißt Breitenkreis.
  • Die Meridiane und Breitenkreise sind die Krümmumgslinien der Rotationsfläche. (Sie schneiden sich senkrecht und geben in jedem Punkt die Richtungen maximaler und minimaler Normalkrümmungen an (siehe Torus).)

Weitere Beispiele: Rotationsellipsoid, Rotationsparaboloid, Rotationshyperboloid.

Bemerkung:

  1. Eine Rotationsfläche lässt sich auch durch die Rotation einer geeigneten anderen Kurve, die nicht mit der Rotationsachse in einer Ebene liegt, erzeugen. Ein einfaches Beispiel ist das Rotationshyperboloid. Es lässt sich durch Rotation einer auf ihr liegenden (zur Rotationsachse windschiefen) Gerade erzeugen. Die erzeugende Gerade ist kein Meridian.
  2. Der Umriss einer Rotationsfläche ist i.a. kein Meridian oder ein anderer ebener Schnitt, siehe Umrisskonstruktion.

Analytische Beschreibungen von Rotationsflächen

Rotation eines Punktes

Die analytische Beschreibung einer Rotationsfläche hängt direkt von der analytischen Beschreibung der rotierten ebenen Kurve, des Hauptmeridians, ab. Im Folgenden wird immer vorausgesetzt, dass die z-Achse die Rotationsachse ist.

Lässt man den Punkt der x-z-Ebene um die z-Achse rotieren, so erhält man den Kreis mit Radius .

Meridian in Parameterform

Kegel als Rotationsfläche
Ellipsoid als Rotationsfläche

In diesem Fall wird vorausgesetzt, dass

  • der Hauptmeridian die Kurve mit ist.

Die Parameterform der zugehörigen Rotationsfläche ist dann

Für geometrische Betrachtungen ist es meist wichtig eine Flächennormale zur Verfügung zu haben. Unter entsprechenden Differenzierbarkeitsvoraussetzungen ergibt sich für eine Normale in einem Flächenpunkt

Für den Oberflächeninhalt ergibt sich (ohne mögliche Boden- und Deckelkreise !)

.

Beispiele:

1) (Strecke) ergibt den Kegel
mit Grundkreisradius und der Höhe .
2) (Kreis) ergibt den Torus (s. Bild)
3) (Halbellipse) ergibt das Rotationsellipsoid
4) (Kosinuskurve) ergibt
Für das erste Bild (Vase) wurden folgende Parameter verwendet:

Meridian in impliziter Form

Rotationsfläche, Meridian=Cassini-Kurve

In diesem Fall wird vorausgesetzt, dass

  • der Hauptmeridian die in der r-z-Ebene durch die Gleichung mit implizit gegebene Kurve ist.

Die implizite Darstellung der zugehörigen Rotationsfläche ergibt sich durch die Ersetzung

Eine Flächennormale in einem Flächenpunkt ist:

Beispiele:

1) (Strecke) ergibt den Kegel mit der Gleichung
dem Grundkreisradius und der Höhe .
2) (Kreis) ergibt den Torus mit der Gleichung
3) (Cassini-Kurve) ergibt die Fläche mit der Gleichung
Für das Bild wurde (Lemniskate) gewählt.

Typen von Rotationsflächen

Rotationsflächen konstanter Gaußscher Krümmung wurden von Gauß und Ferdinand Minding klassifiziert. Rotationsflächen mit verschwindender Gaußscher Krümmung sind die Ebene, der Zylinder und der Kegel. Rotationsflächen mit positiver Gaußscher Krümmung sind die Kugeloberfläche, die Flächen vom Spindeltyp und die Flächen vom Wulsttyp. Rotationsflächen mit negativer Gaußscher Krümmung sind die Pseudosphäre, die auch als Mindingsche Fläche bekannt ist, die Flächen vom Kegeltyp und die Flächen vom Kehltyp. (Die Kugeloberfläche und die Pseudosphäre haben konstante Gaußsche Krümmung.)

Siehe auch

Literatur

  • W. Kühnel: Differentialgeometrie, Vieweg-Verlag, Braunschweig/Wiesbaden, 2003, ISBN 3-528-17289-4, S. 52
  • Manfredo Perdigão do Carmo: Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., New Jersey, 1976, ISBN 0-13-212589-7
  • Kleine Enzyklopädie Mathematik, Harri Deutsch-Verlag, 1977, S. 621
  • Michael Spivak: A Comprehensive Introduction to Differential Geometry (Band 3), Publish or Perish Press, Berkeley, 1999, ISBN 0-914098-72-1
  • Karl Strubecker: Differentialgeometrie (Band III), Sammlung Göschen, Band 1180, De Gruyter, Berlin, 1959
  • Drehflächen und Regelflächen (PDF-Datei; 777 kB) mit Formeln zur Krümmungsberechnung und Beispielen von Rotationsflächen
Dieser Artikel basiert ursprünglich auf dem Artikel Rotationsfläche aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.