Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Lorentzsche Mannigfaltigkeit

Aus Jewiki
Zur Navigation springen Zur Suche springen

Eine lorentzsche Mannigfaltigkeit oder Lorentz-Mannigfaltigkeit (nach dem niederländischen Mathematiker und Physiker Hendrik Antoon Lorentz) ist eine Mannigfaltigkeit mit einer Lorentzmetrik. Sie ist ein Spezialfall einer pseudo-riemannschen Mannigfaltigkeit mit der Metrik-Signatur (-,+,+,+,...). Lorentzmannigfaltigkeiten sind für die allgemeine Relativitätstheorie von entscheidender Bedeutung, da dort die Raumzeit als vierdimensionale lorentzsche Mannigfaltigkeit modelliert wird.

Punktrelationen und Gliederung der Mannigfaltigkeit

Da die lorentzsche Metrik im Gegensatz zur riemannschen nicht positiv definit ist, treten drei verschiedene Arten von Tangentialvektoren an die Mannigfaltigkeit auf:

  • zeitartige Vektoren mit ,
  • raumartige Vektoren mit ,
  • lichtartige Vektoren mit , deshalb auch Nullvektoren genannt.

Nicht-raumartige Vektoren (also solche mit ) werden auch kausale Vektoren genannt. Kurven in der Mannigfaltigkeit werden als zeitartig, raumartig, lichtartig, kausal bezeichnet, wenn die Tangentialvektoren an die Kurve auf gesamter Länge der Kurve der entsprechenden Kategorien angehören.

Man kann nun Punktpaaren in der Mannigfaltigkeit ihre Relation zuordnen. Wenn eine stückweise glatte zeitartige Kurve zwischen den Punkten existiert liegt ein Punkt in der Zukunft des anderen. Die zeitartige Zukunft bzw. der Inhalt des Lichtkegels eines Punktes ist die Menge aller Punkte die von aus mit einer zukunftsgerichteten stückweise glatten zeitartigen Kurve erreicht werden. Sie wird mit bezeichnet. Die kausale Zukunft ist analog die Menge aller Punkte die mit stückweise glatten kausalen Kurven erreicht werden. Entsprechend definiert man die zeitartige und kausale Vergangenheit und .

Lorentzsche Länge

Die lorentzsche Länge einer glatten kausalen Kurve ist

t ist ein beliebiger Kurvenparameter, nicht notwendig die Zeit.

Im Unterschied zur riemannschen Geometrie ist das Infimum der lorentzschen Länge aller glatten Kurven zwischen zwei zeitartig auseinanderliegenden Punkten immer null. Jedoch die zeitartige Geodäte zwischen diesen zwei Punkten hat, wenn sie existiert, die größte lorentzsche Länge unter allen kausalen Kurven zwischen diesen beiden Punkten.

Lorentzscher Abstand

Als lorentzscher Abstand zwischen zwei Punkten und wird nun das Supremum der lorentzschen Länge über alle kausalen Kurven von nach gewählt, wenn in liegt, ansonsten definiert man .

Siehe auch

Literatur

  • John K. Beem, Paul E. Ehrlich, Kevin L. Easley: Global Lorentzian Geometry (= Monographs and Textbooks in Pure and Applied Mathematics 202). 2nd Edition. Marcel Dekker Inc., New York NY u. a. 1996, ISBN 0-8247-9324-2.
Dieser Artikel basiert ursprünglich auf dem Artikel Lorentzsche Mannigfaltigkeit aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.