Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Lithiumhydrid

Aus Jewiki
Zur Navigation springen Zur Suche springen
Kristallstruktur
Struktur von Lithiumhydrid
__ Li+     __ H
Allgemeines
Name Lithiumhydrid
Verhältnisformel LiH
CAS-Nummer 7580-67-8
Kurzbeschreibung

weißer geruchloser Feststoff[1]

Eigenschaften
Molare Masse 7,95 g·mol−1
Aggregatzustand

fest

Dichte

0,78 g·cm−3[1]

Schmelzpunkt

688 °C[1]

Löslichkeit

reagiert heftig mit Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
02 – Leicht-/Hochentzündlich 06 – Giftig oder sehr giftig 05 – Ätzend

Gefahr

H- und P-Sätze H: 260​‐​301​‐​314
EUH: 014
P: 223​‐​231+232​‐​280​‐​301+310​‐​370+378​‐​422Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [1]
MAK

Schweiz: 0,025 mg·m−3 (gemessen als einatembarer Staub)[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Lithiumhydrid LiH ist eine salzartige chemische Verbindung von Lithium und Wasserstoff. Da Lithiumhydrid sehr stabil ist, stellt es in Verbindung mit der niedrigen molaren Masse des Lithiums einen hervorragenden Wasserstoffspeicher mit einer Kapazität von 2,8  Wasserstoff pro Kilogramm dar. Der Wasserstoff kann durch Reaktion mit Wasser freigesetzt werden.[3]

Gewinnung und Darstellung

Lithiumhydrid wird durch die Umsetzung von flüssigem metallischem Lithium mit molekularem Wasserstoff bei 600 °C hergestellt.[3]

Eigenschaften

Physikalische Eigenschaften

Lithiumhydrid ist ein weißes bis graues, brennbares Pulver, das mit einer Dichte von 0,76 g/cm³ einer der leichtesten nicht porösen Feststoffe ist. Es schmilzt bei 688 °C.[1] Die Bildungsenthalpie beträgt −90,43 kJ/mol.[4]

Chemische Eigenschaften

Lithiumhydrid ist brennbar, reagiert also mit elementarem Sauerstoff. Dabei entsteht Lithiumhydroxid:[1]

Es reagiert mit Wasser, Säuren und Basen unter Freisetzung von Wasserstoff:[3]

Es reduziert beziehungsweise hydriert organische Verbindungen, zum Beispiel Formaldehyd zu Methanol:

Lithiumhydrid beginnt bei 900–1000 °C, sich in elementares Lithium und Wasserstoff zu zersetzen und ist damit das thermisch stabilste Alkalimetallhydrid.[5]

Beim Erhitzen im Stickstoffstrom bildet sich Lithiumnitrid. Als Zwischenstufen entstehen Lithiumamid (LiNH2) und Lithiumimid (Li2NH).[6]

Verwendung

Lithiumhydrid dient als Reduktionsmittel zur Herstellung von Hydriden und Doppelhydriden.[3] Des Weiteren wird es zur Deprotonierung CH-acider Verbindungen benutzt. Ein weiteres Einsatzgebiet ist mit der Herstellung der Hydriermittel Lithiumboranat und Lithiumalanat gegeben.[3]

Aufgrund seines hohen Dipolmoments ist Lithiumhydrid im Zusammenhang mit der Bose-Einstein-Kondensation ultrakalter Atome interessant.[7]

Lithiumdeuterid

Bei Lithiumdeuterid (LiD) handelt es sich um deuteriertes Lithiumhydrid, d. h., es wurde das Wasserstoff-Isotop Deuterium anstelle von normalem Wasserstoff verwendet. Lithiumdeuterid ist einer der Kernbestandteile der festen Wasserstoffbombe, durch den die Aufbewahrung und Handhabung des ansonsten gasförmigen Deuteriums und die Erzeugung des zur Fusion nötigen Tritiums immens vereinfacht wurde.[8][9]

Sicherheitshinweise

Da Lithiumhydrid mit gängigen Feuerlöschmitteln wie Wasser, Kohlendioxid, Stickstoff oder Tetrachlorkohlenstoff stark exotherm reagiert, müssen Brände mit inerten Gasen wie z. B. Argon gelöscht werden.[10]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 Eintrag zu Lithiumhydrid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. Januar 2018 (JavaScript erforderlich).
  2. SUVA: Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.
  3. 3,0 3,1 3,2 3,3 3,4 E. Riedel: Anorganische Chemie. 5. Auflage. de Gruyter, Berlin 2002, ISBN 3-11-017439-1, S. 612–613.
  4. R. Abegg, F. Auerbach, I. Koppel: Handbuch der anorganischen Chemie. 2. Band, 1. Teil, Verlag S. Hirzel, 1908, S. 120. (Volltext)
  5. D. A. Johnson: Metals and chemical change. Band 1, Verlag Royal Society of Chemistry, 2002, ISBN 0-85404-665-8, S. 167. (Eingeschränkte Vorschau in der Google Buchsuche)
  6. K. A. Hofmann: Lehrbuch der anorganischen Chemie. 2. Auflage. Verlag F. Vieweg & Sohn, 1919, S. 441. (Volltext)
  7. I. V. Hertel, C.-P. Schulz: Atome, Moleküle und Optische Physik. Band 2, Springer Verlag, 2010, ISBN 978-3-642-11972-9, S. 80. (Eingeschränkte Vorschau in der Google Buchsuche)
  8. Richard Bauer: Lithium - wie es nicht im Lehrbuch steht. In: Chemie in unserer Zeit. 19, 1985, S. 167–173. doi:10.1002/ciuz.19850190505.
  9. Rutherford Online: Lithium
  10. F. Ullmann, W. Foerst: Encyklopädie der technischen Chemie. Band 8, 3. Auflage. Verlag Urban & Schwarzenberg, 1969, S. 723. (Eingeschränkte Vorschau in der Google Buchsuche)
Dieser Artikel basiert ursprünglich auf dem Artikel Lithiumhydrid aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.