Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Leuchtstofflampe

Aus Jewiki
(Weitergeleitet von Leuchtstoffröhre)
Zur Navigation springen Zur Suche springen
Leuchtstofflampen in verschiedenen Ausführungsformen

Die Leuchtstofflampe ist eine Niederdruck-Gasentladungsröhre, spezieller: Metalldampflampe, die innen mit einem fluoreszierenden Leuchtstoff beschichtet ist. Sie besitzt im Gegensatz zur Leuchtröhre bzw. zur Kaltkathoden-Fluoreszenzröhre heiße Kathoden, die Elektronen durch den Edison-Richardson-Effekt (Glühemission) abgeben.

Als Gasfüllung dient Quecksilberdampf zur Emission von Ultraviolettstrahlung und zusätzlich meist Argon. Die Ultraviolettstrahlung wird von der Leuchtstoffbeschichtung in sichtbares Licht umgewandelt (siehe Abschnitt Lichtfarbe).

Geschichte

Funktionalistische Schreibtischleuchte aus den späten 1960er Jahren mit Leuchtstofflampe

Der erste Vorläufer der modernen Leuchtstofflampe ist die Geißlerröhre (benannt nach Heinrich Geißler, der sie 1857 erfand). Die Geißlerröhre besteht aus einer evakuierten Glasröhre mit jeweils einer Elektrode an den Enden. Die Röhre ist mit einem Gas (z. B. Neon, Argon oder auch einfach nur Luft) unter niedrigem Druck gefüllt. Legt man eine Hochspannung an die beiden Elektroden an, so beginnt das Gas im Inneren zu leuchten. In den 1880er Jahren wurde diese Röhre in größeren Stückzahlen produziert. Sie diente vorwiegend der Unterhaltung, da sie für Beleuchtungszwecke nicht hell genug war. Nikola Tesla verwendete in seinem Labor Leuchtröhren und hatte vor, alle Haushalte mit Leuchtstofflampen auszustatten, die in Anwesenheit des elektromagnetischen Wechselfelds eines Tesla-Transformators drahtlos leuchten.

1901 erfand Peter Cooper-Hewitt die Quecksilberdampflampe, die blaugrünes Licht ausstrahlt. Diese Lampe wurde aufgrund ihrer hohen Effizienz in der Fotografie genutzt. Die Lichtfarbe war bei der damaligen Schwarzweißfotografie noch von geringer Bedeutung. 1913 entwickelte Philipp Siedler Leuchtstoffröhren mit Edelgasfüllung.[1] Edmund Germer schlug 1926 vor, den Druck innerhalb der Röhre zu erhöhen und die Röhre mit einem Leuchtstoff zu beschichten, der ultraviolette Strahlung in sichtbares Licht umwandelt. Die Firma General Electric kaufte später Germers Patent und produzierte ab 1938 Leuchtstofflampen mit kommerziellem Erfolg.

Seither haben Leuchtstofflampen insbesondere in der Arbeitsplatzbeleuchtung große Verbreitung erfahren. Seit etwa 1980 gibt es sie auch als Kompaktleuchtstofflampen, welche – in der Ausführung mit integriertem Vorschaltgerät und E14- oder E27-Lampensockel – im Haushaltsbereich mehr und mehr die Glühlampe ersetzten. Neuerdings übernehmen immer öfter LED-Leuchtmittel diese Funktion.

Funktion

Gasentladung

Zum Zünden der Lampe ist eine hohe Zündspannung erforderlich, denn erst, nachdem die Gasfüllung der Leuchtstofflampen ionisiert wurde, kann der Strom fließen. Der Wert der benötigten Zündspannung kann durch Vorheizen der Elektroden reduziert werden. Nach dem Zünden wird das Gas elektrisch leitend und es bildet sich ein Niederdruckplasma, das so lange erhalten bleibt, wie der u. a. vom Gasdruck abhängige Mindeststrom überschritten ist. Auch bei dessen Unterschreiten braucht das Plasma eine kurze Zeit, um zu rekombinieren, so dass es bei Betrieb der Lampe mit Wechselstrom auch bei der Stromrichtungsumkehr erhalten bleibt. Das trifft auf alle Gasentladungsröhren zu.

Das Plasma weist aufgrund der Stoßionisation einen negativen differentiellen Widerstand auf. Prägt man der Lampe einen größeren Strom auf, sinkt der Spannungsabfall zwischen den Elektroden. Der Betriebspunkt ist somit nicht stabil und bei zu geringem Vorwiderstand zur Strombegrenzung wird die Lampe zerstört. Deshalb müssen Leuchtstofflampen, wie auch alle anderen Gasentladungslampen, mit einem Vorschaltgerät betrieben werden. Bei Betrieb mit Wechselstrom verwendet man eine Induktivität in Reihenschaltung zur Lampe. Der direkte Betrieb an Gleichstrom, der mit einem Vorwiderstand als Strombegrenzer oder per Konstantstromquelle prinzipiell denkbar wäre, ist aufgrund von Entmischungsvorgängen der Ionenarten in der Lampe problematisch, erheblich günstiger ist ein Wechselrichter, der den Gleichstrom in Wechselstrom umwandelt. Seit den 1990er Jahren werden Leuchtstofflampen vorteilhaft mit derartigen elektronischen Vorschaltgeräten (EVG) betrieben, die Wechselspannung von 32 kHz bis über 40 kHz erzeugen.

Das Plasma strahlt Licht aus, wenn die Quecksilberatome von den beschleunigten freien Elektronen angeregt werden und dann wieder auf ein niedrigeres Energieniveau zurückfallen. Im Falle von Quecksilbergas wird überwiegend Ultraviolettstrahlung mit nur geringem Anteil an sichtbarem Licht emittiert. Das wird sichtbar, wenn die Leuchtstoffbeschichtung einer Lampe nicht ganz bis zur Endkappe reicht oder durch Erschütterung abgefallen ist.

Leuchtstoff

Um die Ausbeute an sichtbarem Licht zu erhöhen, wird die Innenseite des Entladungsgefäßes mit einem Leuchtstoff beschichtet (daher der Name Leuchtstofflampe), der im sichtbaren Spektrum zu fluoreszieren beginnt, sobald er mit UV-Strahlung bestrahlt wird. Der Leuchtstoff setzt einen Großteil der UV-Strahlung in sichtbares Fluoreszenzlicht um. Der Rest der ultravioletten Strahlung wird durch das Glas der Lampe weitgehend absorbiert, so dass nur unbedenklich wenig gesundheitsschädliche UV-Strahlung aus der Lampe dringt.

Der eingesetzte Leuchtstoff ist entsprechend der Lampenfarbe eine Mischung aus verschiedenen Leuchtstoffen. Durch das Mischungsverhältnis kann die Lichtfarbe eingestellt werden. Früher war Halophosphat gängig, die aktuelle Technik ist Triphosphor. Eine besonders gute Farbwiedergabe wird mit den sogenannten Fünfbandenleuchtstoffen erreicht. Hierbei treten nicht nur einzelne Lichtwellenlängen auf, die sich zu „weißem“ Licht mischen, sondern es sind breitere, aneinandergrenzende Bereiche, so dass ein annähernd kontinuierliches Spektrum entsteht, was zu einer besseren Farbwiedergabe führt. Leuchtstoffe mit einer Abklingzeit der Fluoreszenz von mindestens 1/100 Sekunde verringern das 100-Hertz-Flimmern (doppelte Netzfrequenz), wesentlich längeres Nachleuchten (> 1 s) ist hingegen unerwünscht. Es gibt aber auch Ausführungen mit einer Nachleuchtzeit von einigen Minuten, etwa um bei Stromausfall die Zeit bis zum Einsetzen der Notbeleuchtung zu überbrücken.

Zu Dekorations- und Werbezwecken werden auch einfarbige Leuchtstofflampen angeboten. Sogenannte Schwarzlichtlampen, die nur im UV-Bereich strahlen, sind ebenfalls mit einem Leuchtstoff beschichtet, der gefährliche UV-B-Strahlen in den UV-A-Bereich wandelt. Außerdem ist deren Glaskolben so gefertigt, dass er sichtbares Licht zum größten Teil absorbiert, außer dem leichten Violettschimmer, welcher durch die schwache Wahrnehmbarkeit von langwelligem UV-Licht entsteht.

Standardisierte Baugrößen

Der Röhrendurchmesser von Leuchtstofflampen ist standardisiert. Nach dem Buchstaben „T“ (für „tube“, engl. Röhre) steht der Durchmesser in Achtel Zoll (25,4 mm / 8 = 3,175 mm). Eine T5-Röhre hat z. B. einen Durchmesser von etwa 5/8 Zoll bzw. 16 mm. Neben den Zollangaben sind auch Millimeterangaben vorzufinden:[2] T5 und T8 werden so zu T16 bzw. T26 (siehe Tabelle).

Die Entwicklung begann mit T12-Röhren und geht hin zu schlankeren Röhren, die weniger Material, Volumen bei Transport, Lagerung und Einbau benötigen und eine höhere Effizienz besitzen. Am verbreitetsten sind heute T8 und T5 sowie in platzsparenden Lichtleisten (etwa für Regale) auch T4. T5-Lampen sind in zwei Varianten verfügbar: Hohe Lichtleistung (Abkürzung HO, „High Output“, oder FQ, „Fluorescent Quintron“) oder große Effizienz (HE, „High Efficiency“, oder FH, „Fluorescent High Efficiency“). Die HO-Lampen sind bei vergleichbarer Leistung kürzer als HE-Lampen. Zusätzlich gibt es bei HO- und HE-Lampen einzelne Typen mit einer nochmals um etwa acht bis zehn Prozent geringeren elektrischen Leistung bei gleicher Lichtstärke.

Die Stiftabstände der Lampensockel an beiden Enden der geraden Bauformen sind ebenfalls genormt. Für unterschiedliche Röhrendurchmesser kommen hierbei zum Teil identische Sockel (gleicher Stiftabstand) zum Einsatz. Dadurch passen T8-Lampen in die Fassungen der älteren T12-Lampen und können diese ersetzen. Außer den geraden Leuchtstofflampen findet man auch ringförmige und U-förmige Ausführungen, letztere meist mit Sockel G13.

Typ T2 T4 T5 T8 T10 T12 T9
(Ringform)
Durchmesser in mm 7 13 16 26 32 38 30
Sockel W4.3 G5 G13 G10q

Die Längen sind für die gerade Bauform von Leuchtstofflampen ebenfalls genormt (Länge ohne Kontaktstifte):

Typ T4
Leistung in W 6 8 12 16 20 24 30
Länge in mm 205 325 355 454 552 641 751
Typ T5
Leistung in W 4 6 8 13 14 HE 24 HO 21 HE 39 HO 25 HE 28 HE 50 HO 54 HO 32 HE 35 HE 49 HO 73 HO 80 HO
Länge in mm 136 212 288 517 549 849 1149 1449
Typ T8 (* = verbreitet)
Leistung in W 10 10 14 15* 16 18* 23 25 25 25 30* 36* 36 38 58* 70
Länge in mm 330 470 361 438 520 590 970 691 742 818 895 1200 970 1047 1500 1764

Die relevanten Normen sind:

  • DIN EN 60081 – Zweiseitig gesockelte Leuchtstofflampen[3]
  • DIN EN 60901 – Einseitig gesockelte Leuchtstofflampen[4]

Typen

Schaltzeichen einer Leuchtstofflampe mit den vier Anschlüssen für die Glühkathoden. Der schwarze Punkt bedeutet, dass die Röhre gasgefüllt ist.

Man unterscheidet zwischen so genannten Heißkathodenlampen (Leuchtstofflampen im engeren Sinne) und Kaltkathodenlampen (CCFL von engl. cold cathode fluorescent lamp und einige Leuchtröhren).

Heißkathodenlampen

Heißkathode einer Ultraviolettlampe (ohne Leuchtstoff)
Kompaktleuchtstofflampe, 18 Watt, mit integriertem Starter zum Betrieb an einem externen Vorschaltgerät
Röntgendurchstrahlungsbild aus drei Blickrichtungen (0°, 45°, 90°) durch eine defekte Energiesparlampe. Ganz links, im ersten Röhrenteil, ist die durchgebrannte Glühkathode (Filament) zu erkennen.

Bei den Heißkathodenlampen (Leuchtstofflampen, Energiesparlampen) ist an den Enden jeweils ein Heizdraht aus Wolfram eingebaut. Eine Beschichtung aus Erdalkalimetalloxiden reduziert die Austrittsarbeit der Elektronen, so dass der Heizdraht schon bei Temperaturen um 1100 °C genügend Elektronen emittiert. Beim Startvorgang werden zunächst beide Elektroden von höherem Strom durchflossen, um sie zu heizen. Dann wird durch die Starteinrichtung zwischen den Elektroden zuerst die Zündspannung von einigen tausend Volt erzeugt, anschließend stellt sich durch den Betriebsstrom die eigentliche Brennspannung von etwa 50 Volt ein. Diese ist eine Wechselspannung, daher wirken beide Elektroden jeweils eine halbe Periode lang abwechselnd als Anode (positiv geladene Elektrode) bzw. Kathode.

Diese Entladungsspannung beschleunigt die Elektronen, die sich um den Kathodenheizdraht angesammelt haben, im elektrischen Feld in Richtung Anode. Bei ihrem Flug durch die Lampe stoßen die Elektronen mit den Quecksilberatomen zusammen. Dabei wird das Gas ionisiert (Stoßionisation), und es entsteht ein Plasma innerhalb des Glaskolbens.

Durch Ionen- und Elektronenbeschuss der Elektroden wird nun die Erwärmung der Kathoden durch den Entladungsstrom selbst aufrechterhalten, und der Heizstrom durch die Kathoden ist nicht weiter erforderlich.

Heißkathodenlampen ohne Leuchtstoff werden vorwiegend zur Entkeimung von künstlich angelegten Gewässern und Trinkwasser verwendet, da sich die UV-Strahlung besonders gut zum Abtöten von Kleinstlebewesen eignet. Dazu muss die Lampe aus Quarzglas gefertigt sein. Eine weitere Anwendung war das Löschen von EPROMs. Für die Verwendung in Solarien oder in Diskotheken werden Glassorten eingesetzt, welche die Emission des krebserregenden UV-B- und UV-C-Anteils auf ein zulässiges Minimum reduzieren.

Sogenannte Schwarzlichtlampen sind außerdem mit Nickeloxid beschichtet, das den sichtbaren Teil des Quecksilber-Spektrums absorbiert und nur den Ultraviolettanteil (UV-A) spezieller Leuchtstoffe austreten lässt (Verwendung in Diskotheken, in der Mineralogie, im Schwarzen Theater und bei UV-Prüfgeräten für Banknoten, Dokumente, Ausweise etc).

Auch Kompaktleuchtstofflampen bzw. „Energiesparlampen“ sind Heißkathodenlampen.

Niederdruck-Natriumdampflampen sind ähnlich wie Heißkathoden-Leuchtstofflampen aufgebaut, jedoch ohne Leuchtstoff und mit Natrium statt des Quecksilbers. Sie haben eine noch höhere Lichtausbeute als Leuchtstofflampen, jedoch wegen des hohen Gelbanteils eine sehr schlechte Farbwiedergabe.

Betrieb mit konventionellem Vorschaltgerät (KVG)

Die Artikel Leuchtstofflampe#Betrieb mit konventionellem Vorschaltgerät (KVG) und Vorschaltgerät#KVG für Leuchtröhren überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Beteilige dich dazu an der Diskussion über diese Überschneidungen. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz. Norbirt 07:15, 18. Sep. 2010 (CEST)

Datei:Fluorescent lamp-electronic ballast-sound ANr°0001.ogg Ein KVG besteht aus einer Netz-Drossel (Drosselspule für 50 Hz), zusätzlich ist ein Starter erforderlich. Er ist nahe der Lampe oder bei manchen Kompaktleuchtstofflampen in dieser integriert.

Drossel
Vorschaltgerät für eine 36-W-Leuchtstofflampe

Leuchtstofflampen arbeiten – je nach Typ und Länge – mit etwa 40 bis 110 V Brennspannung (Spannungsabfall über der Entladungsstrecke). Auf Grund ihres negativen differentiellen Widerstands (Spannungsabfall fällt mit steigendem Strom) benötigen sie eine Strombegrenzung. Üblich sind, um keine Wirkleistung in Wärme umzusetzen, in Reihe geschaltete Blindwiderstände. Meist sind dies Induktivitäten, es sind aber auch Kapazitäten und (Serien-)Schwingkreise möglich. Im Artikel Vorwiderstand ist eine Berechnung des induktiven Widerstandes angeführt.

Eine Drossel, in Reihe zur Lampe geschaltet, kann auch die zur Zündung der Lampe erforderliche Spannung erzeugen. Kondensatoren erfordern eine zusätzliche (kleinere) Drossel. Früher waren vorwiegend konventionelle Vorschaltgeräte (KVG) im Einsatz. Diese wiesen bei einer 58-Watt-Lampe eine Verlustleistung von etwa 13 Watt auf. Mittlerweile werden als Weiterentwicklung so genannte Verlustarme Vorschaltgeräte (VVG) mit ca. 7 Watt Verlustleistung verwendet. Diese werden durch Elektronische Vorschaltgeräte (EVG) verdrängt.

Starter
Geöffneter Starter. Der Sollwert des Entstörkondensators beträgt für diese Serienausführung 5 nF.
So funktioniert ein Starter

Datei:Fluorescent lamp-electronic ballast starter-movie VNr°0001.ogv

Typisches Aufleuchten eines Starters vor dem Durchzünden der Lampe

Das Bild rechts zeigt einen geöffneten Glimmstarter (links: Gehäuse, rechts: ein Streichholz zum Größenvergleich). Der Starter leitet die Zündung der Lampe ein. Er ist parallel zur Lampe, aber in Reihe zu den Glühwendeln angeschlossen und enthält in seiner traditionellen Ausführung eine Glimmlampe, deren Elektroden als Bimetallstreifen (siehe Bild rechts) ausgeführt sind und sich durch die Glimmentladung erwärmen. Die Zündspannung der Glimmlampe ist so bemessen, dass sie oberhalb der Betriebsspannung der Leuchtstofflampe (50 V bis 110 V, s. u.) liegt. Parallel zur Glimmlampe liegt ein Entstörkondensator, im Bild rechts neben der Glimmlampe zu sehen. Er begrenzt beim Öffnen der Kontakte die Spannungsanstiegsgeschwindigkeit und sorgt auch bei gezündeter Lampe für eine Verminderung der Störemissionen der Gasentladung der Lampe. Glimmstarter enthalten geringe Mengen 85Krypton zur Vorionisation[5].

Man unterscheidet zwischen Startern für Einzelbetrieb (Einzellampen von 4 bis 65/80 W) und Startern für den sogenannten Tandembetrieb (Zweifachleuchten mit meist zwei Lampen à 18 Watt, die mit einer 36-Watt-Drossel in Reihe geschaltet werden). Ein Starter für Einzelbetrieb kann nicht in einer Tandemleuchte betrieben werden – die Glimmlampenkontakte schließen erst nach mehreren Minuten oder gar nicht. Ein Tandemstarter kann jedoch in Einzelleuchten bis zu einer Stärke von 22 Watt eingesetzt werden. Lampen höherer Leistungen können in Tandemschaltung nicht zuverlässig gezündet werden, wenn die Summe ihrer Brennspannungen deutlich über der halben Netzspannung liegt – es ergäbe sich ein dauerhaftes Flackern der Lampen. Lässt sich eine defekte Lampe nicht mehr zünden, so kommt es bei Glimmstartern aufgrund der fehlenden Sicherung dauerhaft zur Glimmentladung. Die Kontakte der Glimmlampe schließen, und nach einem erfolglosen Zündversuch öffnen sie kurz, um dann erneut zu schließen. Das führt zu dauerhaftem Flackern der Leuchtstofflampe. Es endet erst, wenn in der Lampe ein Heizdraht (eine Elektrode) durchbrennt. Der Starter altert dabei, d. h. die Zündspannung steigt immer weiter an, bis dieser auch eine intakte Leuchtstofflampe nicht mehr zünden kann.

Es gibt bei einem Starter drei Möglichkeiten des Defektes. Zum einen kann der Entstörkondensator mit einem lauten Knall durchschlagen. Zum zweiten können die Elektroden der Glimmlampe verschweißen. Beide Defekte ergeben einen dauerhaft geschlossenen Stromkreis und zerstören in kurzer Zeit durch Ausglühen der Elektroden die Leuchtstoffröhre. Ein dritter möglicher Defekt ist, dass die Gasfüllung innen im Glaskörper ganz oder teilweise durch abgesputtertes Metall verunreinigt wurde. Durch die zu hohe Brennspannung solcher Starter dauern Startvorgänge immer länger oder erfolgen gar nicht mehr.

Durch Dauerbeheizung stark geschädigte Lampe (58 Watt / 827)
Elektrode einer Leuchtstofflampe T8 L 58W/880. Durch einen fehlerhaft arbeitenden Starter reagierte der überhitzte Heizwendel mit der Gasfüllung der Röhre.

Wird eine intakte Lampe durch einen defekten Starter stunden- oder tagelang beheizt, verdampft die Erdalkalioxidbeschichtung der Elektroden. Der Spannungsabfall an den Elektroden erhöht sich und der Leuchtstoff an den Enden der Röhre wird abgedeckt (erkennbar an den geschwärzten Enden). Beides reduziert den Wirkungsgrad oder verhindert gar die Zündung der Röhre. Letzteres kann auch für nur eine Flussrichtung erfolgen, die Lampe flimmert dann mit der halben Frequenz (statt 100 Hz mit 50 Hz) und mit ausgeprägten Dunkelphasen (statt 3 bis 4 ms mit 14 bis 15 ms). Da sich die gezündete Lampe nach kurzer Brenndauer von den Enden her erwärmt, leuchten diese oft deutlich heller als die Mitte, in der sich eine Art „Lichtstromloch“ ergibt. Es verschwindet erst bei erreichter Betriebstemperatur (meist nach mehreren Minuten) langsam wieder, da sich nun die gesamte Lampe erwärmt hat. Eine solche Lampe erreicht ihren vollen Lichtstrom, wenn überhaupt, erst nach längerer Zeit – am ehesten noch bei höheren Umgebungstemperaturen.

Sicherungsschnellstarter, die umgangssprachlich auch als Blitzstarter bezeichnet werden, lösen nach mehreren erfolglosen Zündversuchen (ca. eine Minute) eine integrierte thermisch-mechanische Sicherung (zweiter Bimetallschalter) aus, so dass keine weiteren Startversuche unternommen werden. Dadurch flackert die Lampe am Ende ihrer Lebensdauer nicht ständig weiter, wie es bei einem konventionellen Starter der Fall ist. Durch Drücken eines (meist roten) Knopfes kann die Sicherung wieder zurückgestellt werden.

Elektronische Starter

Ein „halbelektronischer“ Relaisstarter für Leuchtstofflampen. Die Zuverlässigkeit dieser Schaltung wird insbesondere von der Spannungsverträglichkeit der hier kritisch zu wertenden Bauteile C2 und D2 bestimmt.
Starter mit einem Relais

Im abgebildeten Ausführungsbeispiel eines relaisgesteuerten Starters wird der für die Zündung der Leuchtstofflampe erforderliche Drosselstrom durch den Varistor V1 und den Widerstand R1 bestimmt. Wenn der Kondensator C1 spätestens nach der zweiten positiven Halbwelle der über die Drossel zugeführten Netzspannung die Schaltschwelle vom Kleinrelais erreicht hat (C1 = 47 µF), wird der Zündkondensator C2 mit einem optionalen Dämpfungswiderstand R2 zu der Drossel bzw. an die Elektroden der Leuchtstofflampe zugeschaltet. Nach deren Zündung sperrt V1 für Elektrodenspannungen von maximal 120 Volt und der Zündkreis aus C2, R2 und der zum Schutz des Elkos dienenden Damperdiode D2 wird wieder geöffnet. Da über D1, V1 und R1 gegenüber dem Glimmstarter ein geringerer und hier nur in einer Halbwellenrichtung fließender Drosselstrom für den Zündungsvorgang bereitgestellt werden kann, ist ein Einsatz dieser Starterschaltung für Leuchtstofflampen mit einer Nennleistung über ca. 40 Watt nicht unproblematisch. Die nur mit einem besonderen und streng genommen auf die Drosselinduktivität abzustimmenden Kondensator C2 eingeleitete Zündung erfolgt nach spätestens vier aufeinanderfolgenden Halbwellen zuzüglich der Relaisschaltzeit von maximal 20 ms.

Thyristorstarter für Leuchtstofflampen

Im angeführten Schaltungsbeispiel eines Thyristorstarters sind nach dem Anlegen der Versorgungsspannung der Thyristor TY2 gesperrt und TY1 über den Widerstand R1 durchgeschaltet. Der in der Drossel für den Zündvorgang bereitzustellende Strom wird maßgeblich von R2 bestimmt. Nachdem C1 die Schaltschwelle von TY2 erreicht hat, wird TY1 abgeschaltet und die Zündspannung mit Hilfe von C2 und dem weiteren eigenkapazitiven Anteil im Leuchtstofflampenkreis erzeugt. Der Widerstand R4 stellt sicher, dass TY2 im Lampenbetrieb durchgeschaltet bleibt und der Zündschalter TY1 somit nicht wieder leitend gemacht wird. Dieser Widerstand entfällt für solche Ausführungen für TY1, bei denen Schaltvorgänge unterhalb eines bestimmten Anoden-Katodenpotenzials – das hier über der maximalen Betriebsspannung der Leuchtstofflampe liegen muss – auch im Fall eines zum Durchschalten vorliegenden Gatestromes definitiv ausgeschlossen sind. Da R2 erheblich kleiner als R3 gewählt wird, bewirkt die Diode D2 eine ausreichend schnelle Entladung von C1 nach dem Abschalten der Leuchtstofflampe. Verschiedene industrielle Komponentenhersteller für Thyristorstarter beziehen sich in ihren Applikationsdarstellungen auf eine Vollweggleichrichtung im Starterzweig und setzen parallel zu R2 zwei seriell geschaltete Leistungsdioden.[6][7][8] Da der Spannungsabfall über beide Dioden, dem als „Fluoractor“ bezeichneten Spezialthyristor und einer zumeist weiteren Diode an dessen Kathode gegenüber der Versorgungsspannung vernachlässigbar klein ist, wird im Vergleich zur angegebenen Relaisstarterausführung die Drossel mit einem erheblich größeren Strom beaufschlagt, was abhängig von ihrer technischen Dimensionierung, zumindest aber potenziell eine Verringerung ihrer zum Zünden bereitgestellten magnetischen Energie bedeuten kann. Der weitere und in der Praxis größere Nachteil von industriell vorgestellten Thyristorsschaltungen besteht darin, dass die Elektrodenheizung bereits unterhalb der ungefähr halben Versorgungsspannung wirksam wird, also in einem Bereich, wo eine sichere Zündung der Lampe noch nicht erfolgen und somit von unnötigem thermischen Verschleiß der Elektrodenwendel ausgegangen werden kann.[9] Daraus folgt ein nicht unerheblicher Nachteil gegenüber dem Relaisstarter, der seine funktionellen Vorteile grundsätzlich dann ausspielen kann, wenn die Drossel schon bei einem relativ kleinen Vorerregungsstrom ihren ausreichenden Energiebeitrag für den Zündvorgang leisten kann.

Aufwändigere Schaltungskonzepte von elektronischen Startern[10] sind gegenüber dem klassischen Glimmstarter zuverlässiger, schalten ebenfalls die Lampe im Fehlerfall ab, müssen aber nicht rückgestellt werden. In der Ausführung als Softstarter verlängern sie die Lebensdauer der Lampe vor allem in Anwendungen mit vielen Schaltvorgängen (zum Beispiel Lichtsteuerung mit Bewegungsmeldern) erheblich. Der Startvorgang eines elektronischen Starters kann auf zweierlei Weise ablaufen:

  • Softstart: Das Vorheizen der Kathoden erfolgt durch Wechselstrom wie bei konventionellen Startern. Die Kathoden glühen dabei leicht auf. Nach einer kurzen Zeit von 1 bis 3 s, abhängig vom Modell, öffnet der Starter, wodurch eine hohe Induktionsspannung in der Drossel entsteht, welche die Lampe zündet.
  • Schnellstart: Der Drosselstrom wird gleichgerichtet, dadurch ist er aufgrund der Sättigung der Drossel gegenüber konventionellen Startern höher. Der Starter öffnet und zündet deshalb innerhalb einer halben Sekunde. Ein Nachteil dieser zweiten Methode ist das Geräusch der Drossel: Ist diese auf Metall montiert, so ist während der Startphase ein sehr lautes Brummen zu hören. Falls durch einen Defekt im elektronischen Starter diese Art der Vorheizung nicht wie vorgesehen sehr schnell wieder beendet wird, würde die Leuchtstofflampe in kürzester Zeit schwer geschädigt.

Elektronische Vorschaltgeräte (EVG) bewerkstelligen den Startvorgang selbst.

Zündet eine Leuchtstofflampe nicht mehr, so kann neben dem Starter auch die Drossel (recht selten) oder eine der Kathoden defekt sein – dadurch ist der Stromkreis unterbrochen, die Lampe zeigt keine Leuchterscheinung mehr (weder Glühen noch Leuchten oder Flackern – vergleiche hierzu die untenstehenden Schaltbilder).

Wenn während des Betriebes eine der Kathoden taub wird, so fließt nur noch während einer Halbwelle Strom durch die Lampe; der Starter wird nun versuchen, erneut zu zünden, da die Lampe durch das Ausfallen von meist nur einer Elektrode einen Gleichrichtereffekt aufweist. Auch in diesem Fall muss die Lampe rechtzeitig ausgewechselt werden.

Startvorgang

Die beiden Elektroden von Leuchtstofflampen haben so großen Abstand d, dass bei U < 400 V die Feldstärke U/d zu gering ist, um eine spontane Stoßionisation hervorzurufen, die nach einem Lawineneffekt das enthaltene Gasgemisch in das notwendige Plasma verwandelt. Bei Glimmlampen ist dagegen der Elektrodenabstand d ausreichend gering, um bereits bei U ≈ 100 V die Zündung einzuleiten. Bei Leuchtstofflampen muss deshalb kurzzeitig eine Überspannung erzeugt werden.

Startvorgang als Animation
  • Bild 1 zeigt den schematischen Aufbau einer Leuchtstofflampe, angeschlossen an einen Bimetallstarter und eine Drosselspule. Der Startvorgang geht hier wie folgt vor sich: Nach dem Einschalten liegt, da durch die Lampe noch kein Strom fließt, die volle Netzspannung am Starter an.
  • Bild 2 Die Glimmlampe, die im Bimetallstarter integriert ist, zündet und erwärmt sich.
  • Bild 3 Der Bimetallstreifen verbiegt sich durch die Erwärmung der Glimmlampe, so dass beide Kontakte kurzgeschlossen werden. Die Glimmentladung erlischt. Nun fließt ein großer Strom durch die Heizwendeln (Elektroden) in der Leuchtstofflampe und die Drosselspule. Die Wendeln beginnen zu glühen und senden Elektronen aus, die das Gas in der Lampe mit Ladungsträgern anreichern.
  • Bild 4 Die nun fehlende Glimmentladung hat eine Abkühlung der Glimmlampe im Starter zur Folge, wodurch sich der Bimetallkontakt wieder öffnet. Da die Glimmlampe und die noch nicht gezündete Leuchtstofflampe zusammen einen hohen Widerstand besitzen, fällt der Strom in der Drosselspule schnell ab (Der geschlossene Bimetallkontakt hat die Glimmlampe überbrückt, da beide parallel geschaltet sind). Die dadurch hervorgerufene Selbstinduktion lässt kurzzeitig eine hohe Spannung (600 bis 2000 Volt) entstehen, welche das mit Ladungsträgern angereicherte Gas in der Lampe zündet. Der Strom fließt nun durch das ionisierte Gas in der Lampe, sie leuchtet.

Da die Lampe mit Wechselstrom betrieben wird, kann beim Öffnen des Bimetallkontakts der momentane Strom in der Drossel zu niedrig sein, um die nötige Zündspannung aufzubauen. Dann beginnt der Startprozess von vorn, indem die Glimmentladung wieder zündet und das Bimetall erwärmt. Deshalb verläuft der Start meist etwas unregelmäßig, und die Lampe flackert oft ein- oder zweimal auf, bevor sie startet.

Nach der Zündung teilt sich die Betriebsspannung an Lampe und Drossel so auf, dass eine ausreichende Spannung (zwischen 50 und 110 Volt) erhalten bleibt, um die Lampe am Leuchten zu halten. Für die Glimmlampe im Starter ist sie zu niedrig, eine weitere Zündung unterbleibt. Diese Spannung reicht nun aus, um nach jeder Richtungsumkehr des Stroms einen weiteren Zündvorgang in der Lampe auszulösen, da das Gas genügend ionisiert und die Elektroden erwärmt sind.

Betrieb mit elektronischem Vorschaltgerät (EVG)

Elektronisches Betriebsgerät einer Kompaktleuchtstofflampe
Elektronisches Vorschaltgerät (EVG) für T8-Leuchtstofflampe im geöffneten Zustand
Endstufe eines Resonanzwandlers mit Resonanztransformator

Die Anordnung aus konventionellem Vorschaltgerät und Starter kann durch ein elektronisches Vorschaltgerät ersetzt werden, üblicherweise sind dies Resonanzwandler. Das Bild zeigt den Aufbau für eine Kompaktleuchtstofflampe („Energiesparlampe“). Zusammen mit dem Siebkondensator (Elektrolytkondensator, großer aufrecht stehender Zylinder) erzeugt der Gleichrichter (kleines schwarzes Bauteil mit dem Aufdruck „+ −“ oberhalb des Kondensators) eine Gleichspannung. Die beiden aufrecht stehenden Bipolartransistoren links vom Siebkondensator wandeln sie in eine hochfrequente Wechselspannung von etwa 40 kHz um, die einen Resonanztransformator (Drossel mit dem Aufdruck „3.5 mH“ und einer der Kondensatoren (4,7 nF) in den rechteckförmigen Plastikgehäusen) mit der Leuchtstofflampe als Last treibt. Der kleine Transformator, bestehend aus einem Ferritkern mit 2×3 und 1×5 Windungen, dient zur Steuerung der Halbbrücke aus den beiden Transistoren. Ins Lampengehäuse integrierte EVGs enthalten üblicherweise eine eingebaute Sicherung.

Die Zündung der Leuchtstofflampe erfolgt nach vorheriger Vorheizung durch die Einstellung der Taktfrequenz der Halbbrücke auf einen Wert, der den Reihenschwingkreis in die Resonanz steuert, was zu einer hohen Spannung von etwa 1000 V über der Lampe führt, die die Leuchtstofflampe zündet. Nach der Zündung fällt die Impedanz der Lampe auf ihren Betriebswert, wodurch sich an der Lampe die Betriebsspannung einstellt.

Als Vorteile gegenüber dem konventionellen Vorschaltgerät ergeben sich, je nach Bauform:

  • fast keine Blindleistung (Geräte mit Leistungsfaktorkorrektur)
  • geringere Verlustleistung in Vorschaltgerät und Lampe (Ersparnis bis zu 30 %)
  • zuverlässiger und schneller Start
  • flimmerfreier Betrieb ohne Stroboskopeffekt, daher auch an rotierenden Maschinen einsetzbar
  • Fehlererkennung und Abschaltung bei defekter Lampe
  • geringere Geräuschentwicklung (kein Netzbrummen)
  • adaptive Spannungsanpassung, z. B. 154 bis 254 V= bei Notstrombetrieb und 220 bis 240 V~ bei normaler Netzverfügbarkeit.
  • Betrieb mit Kleinspannung (zum Beispiel 24 V oder 12 V). Diese EVG können auch an Akkumulatoren betrieben werden und sind daher für den Einsatz in Fahrzeugen, auf Booten oder etwa im Kleingarten geeignet.

Als Nachteil ist der um ca. 4 Prozent verminderte Lichtstrom zu erwähnen.

Die Wirkverlustleistung eines EVG für eine 58-Watt-Leuchtstofflampe beträgt weniger als 2 Watt (Vergleich KVG: 8 bis 13 Watt). Eine weitere Energieeinsparung, den sogenannten HF-Gewinn, erzielt man durch die durchschnittlich bessere Leitfähigkeit des Plasmas: durch den Betrieb mit Hochfrequenz (50 kHz) statt mit Netzfrequenz (50 Hz) entfallen die Phasen, in denen die ionisierten Atome sich mit den freien Elektronen rekombinieren und ein schlecht leitfähiges Plasma ergeben.

Zur Beurteilung des Energieverbrauchs werden EVG wie andere elektrische Verbraucher in Energieeffizienzklassen des Energie-Effizienz-Index (EEI) eingeteilt. Der EEI berücksichtigt sowohl die Leistungsaufnahme des EVG als auch die Lichtausbeute der Lampe. Innerhalb dieser Klassifizierung erreichen gute EVG die Klasse A2. Der Wirkungsgrad eines EVG kann bis zu 95 Prozent erreichen.

Dimmbare EVG können den Lampenstrom variieren, um so eine Helligkeitsregelung (z. B. 3 bis 100 Prozent Helligkeit) der Lampe zu erreichen. Bei geringerer Helligkeit ist die Leistungsaufnahme des EVG gleichermaßen niedriger, wodurch dimmbare EVG unter Umständen in die EEI-Klasse A1 eingeteilt werden können. Bei digitalen EVG ist der dauernd gegebene Stand-by-Verbrauch der Wirtschaftlichkeit abträglich.[11]

Konventionelle Vorschaltgeräte finden sich in der CELMA-Energieklassifizierung unter C bzw. D wieder. Vorschaltspulen mit massiverem Kupferanteil oder optimiertem Eisenkern gelten als 'Verlustarme Vorschaltgeräte' (VVG) und können in die Energieeffizienzklasse B1 bzw. B2 eingeordnet werden.

Aktuelle Entwicklungen zeigen magnetische Vorschaltgeräte mit geringeren als von EVG bekannten Verlusten. Diese Ultra-low-loss-Ballasts sind auch leichter wiederverwertbar.[12][13]

Ein elektronisches Vorschaltgerät ist etwas teurer als ein vergleichbares konventionelles Vorschaltgerät, jedoch hat in der Regel der niedrigere Energieverbrauch sowie die erhöhte Lebensdauer der Lampen eine deutlich größere Kosteneinsparung zur Folge. Andererseits haben EVG eine gegenüber dem VVG deutlich geringere Lebensdauer (ca. 50.000 Stunden)[14]. Des Weiteren dürfen laut der EU-Richtlinie 2000/55/EG Vorschaltgeräte mit der Energieeffizienzklassifizierung C bzw. D seit November 2005 nicht mehr in den freien Handel gebracht werden. Weiterhin reduziert die höhere Betriebsfrequenz zusammen mit dem Nachleuchten der fluoreszierenden Leuchtstoffschicht die Dunkelphasen beim Nulldurchgang der Spannung, weshalb auch die Amplitude der Helligkeitsschwankungen gegenüber dem 50-Hz-Betrieb reduziert ist.

Adapter für die Umrüstung auf T5-Lampen mit EVG

Ältere Leuchten mit KVG für T8-Leuchtstofflampen lassen sich mit Adaptern mit Aufsteck-EVG auf kürzere T5-Lampen kleinerer Leistung umrüsten. Diese EVG werden als Adapterset einseitig oder beidseitig (verbunden oder unverbunden) zwischen Lampe und alte Leuchtenfassung gesteckt. Bei der Umrüstung bleibt die konventionelle Vorschaltdrossel im Stromkreis (als ohmscher Widerstand mit geringer Verlustleistung). Der Starter der konventionellen Leuchte wird bei der Umrüstung durch einen Überbrücker (gleiche Bauform, jedoch kurzgeschlossene Anschlüsse, teilweise mit Feinsicherung) ersetzt.

Das für den Betrieb von T5-Lampen notwendige EVG ermöglicht einen flimmerfreien Betrieb. Je nach Hersteller liegen die Einsparmöglichkeiten bei bis zu ca. 50 Prozent der Stromkosten, gleichzeitig sinkt auch der Lichtstrom (=Helligkeit) in ähnlichem Maß. Diese Adapter reduzieren den Aufwand zur Umrüstung der Leuchten auf eine höhere Energieeffizienz, es ist kein Elektriker nötig. Durch das Verbot der T8/KVG-Systeme im April 2010 (siehe Energielabel) kann dies eine Alternative zum kompletten Umbau oder Austausch darstellen. In Deutschland sollen 400 Mio. Lampen im Einsatz sein, davon weit über 50 Prozent noch T8 oder T12 mit KVG.

Solche Umrüstungen können da sinnvoll sein, wo große Mengen von Leuchtstofflampen durch ihre Blindleistung die Stromnetze stark belasten, meist große Läden in ländlichen Gebieten. Werden neue Leuchten verbaut, kann es zu Engpässen der Stromversorgung kommen. Da die Blindleistung nach der Umrüstung um 99 % abnehmen soll und die Wirkleistung um über 50 %, werden teils erhebliche Leistungen zur weiteren Nutzung frei. In Gebieten mit beschränkter Netzkapazität kann dies ein großer Vorteil sein.

T5-Lampen benötigen gegenüber T8-Lampen eine höhere Umgebungstemperatur für ihren maximalen Lichtstrom (T5 benötigt ca. 35 °C, T8 benötigt 25 °C), was allerdings durch die Eigenerwärmung der T5-Lampe vorteilhaft ist. In kühlen Umgebungen sind allerdings Systeme mit Hüllrohr sinnvoll. Durch Verwendung hochwertiger Spiegelreflektoren kann dieser Verlust unter Umständen ausgeglichen werden. Es gibt auch Adapter, die durch einen gedrosselten Betrieb zwar ein hohes Einsparpotential bieten, bei denen die Lichtausbeute aber deutlich unter der einer T8-Lampe liegt.

Es gibt grundsätzlich Systeme mit einer passiven und einer aktiven Seite. Diese Systeme heizen nur eine Wendel der Lampe vor dem Start und machen dann einen sogenannten Rapidstart. Dies ist an sich nicht durch die Norm der Vorschaltung für Leuchtstofflampen gedeckt. Andere Systeme haben einen beidseitigen Warmstart und haben damit die Möglichkeit, den Softstart mit geringerer Zündspannung durchzuführen. Die Glühwendeln der Lampen altern merklich weniger, die schwarzen Enden bleiben aus. Mit dieser Technik (Voraussetzung ist u. a. eine Kabelverbindung zwischen beiden Enden) versehene EVGs haben dann auch die Möglichkeit, ein ENEC-Prüfzeichen (geprüfte Leuchtenkomponente) zu erhalten. Es ist sinnvoll, direkt bei der Prüfstelle, z. B. beim VDE oder dem TÜV nachzusehen, ob der entsprechende Adapter ein Prüfsiegel hat. Beispielsweise sind Adapter am Markt, die mit einem VDE-Zeichen werben, das sich allerdings nur auf die Sicherheit und nicht auf die Funktion als Vorschaltgerät bezieht. Die Systeme haben je nach Art der Schaltung auch eine Möglichkeit der Erhöhung der Leistung mit aktiven Leistungsfaktorkorrekturfilter im Eingang. Damit ist eine 35-Watt-T5-Lampe (dann mit 38 betrieben) annähernd so hell wie eine 58-Watt-T8-Lampe, die mit KVG und Starter in der Regel ca. 71 Watt verbraucht. Die T5-Lampen werden jedoch außerhalb ihrer Spezifikation betrieben, was die Lebensdauer stark reduziert.

Bedenken beim Einsatz von Umrüstadaptern

Normalerweise sind von allen Leuchtenherstellern produzierte Leuchten für T8- (T26-) Leuchtstofflampen nicht für den Einsatz von T5- (T16-) Lampenadaptern vorgesehen und geprüft. Dies ist auf dem Typenschild und, wenn vorhanden, auf dem Bestückungsetikett durch die Angaben zur Lampe und deren Leistung eindeutig dokumentiert. Werden nachträglich anstatt der vorgesehenen Lampe andere Leuchtmittel verwendet, ist dies kein bestimmungsgemäßer Gebrauch der Leuchte und unterliegt deshalb nicht mehr der Verantwortung (Garantie und Produkthaftung) der Leuchtenhersteller. Die Herstellerverantwortung der von dem Umbau betroffenen Leuchte geht auf den für den Umbau Verantwortlichen über. Eine erneute Herstellerkennzeichnung und Konformitätsbewertung nach geltenden deutschen und europäischen Richtlinien ist nach dem Umbau zwingend erforderlich. Neben den unten angesprochenen Problemen traten bei einigen auf dem Markt angebotenen Modellen wiederholt technische Probleme auf, die mehrfach zu Vertriebsverboten durch die Bundesnetzagentur oder zu Untersagungsverfügungen durch Behörden geführt haben. Auch der Branchenverband ZVEI warnt generell vor einem Einsatz einiger Adapter.[15][16] Ebenso raten Hersteller von Lampen[17] und Leuchten von einem Einsatz ab. Messtechnische Untersuchungen in der Schweiz weisen keine Sinnhaftigkeit der Umrüstung nach.[18]

Kaltkathodenlampen

Kaltkathodenlampen (auch CCFL von engl. cold cathode fluorescent lamp) sind keine Leuchtstofflampen im üblichen deutschen Sprachgebrauch – sie zählen zu den Leuchtröhren. Kaltkathodenlampen sind prinzipiell aufgebaut wie die Heißkathodenlampen, nur dass hier keine Heizdrähte vorhanden sind – die Elektroden bestehen stattdessen aus Blechhülsen.

Ohne Vorheizung kann bei diesen Lampen der Elektronenfluss zwischen Kathode und Anode nur durch eine gegenüber Heißkathodenlampen höhere Spannung erreicht werden. Auch die Zündspannung ist höher. Grund ist der sog. Kathodenfall – unmittelbar an den Kathoden ist eine hohe Feldstärke nötig, um Elektronen daraus zu lösen. Das führt gegenüber Heißkathodenlampen zu einem geringeren Wirkungsgrad, vermeidet jedoch die Heizung und Beschichtung der Elektroden und ermöglicht so eine einfachere, kostengünstigere Herstellung. Die Lebensdauer ist zudem erheblich höher, da der Verschleiß der Elektroden die Funktion im Gegensatz zur Heißkathodenlampe nicht beeinträchtigt.

Kaltkathodenlampen wurden für Leuchtreklame und als Hintergrundbeleuchtung (engl. backlight) von Flüssigkristallbildschirmen (LCD) eingesetzt.

Kaltkathodenlampen für Netzbetrieb wurden früher mit Streufeldtransformatoren betrieben, die einerseits die hohen erforderlichen Betriebsspannungen (5 bis 10 kV) zum Betrieb oft mehrerer, in Reihe geschalteter Lampen erzeugten und andererseits durch deren Streuinduktivität ähnlich einer Drossel den Betriebsstrom begrenzten.

Heute und bei Gleichstrombetrieb (z. B. Notebook) werden Inverter (Wechselrichter und Resonanztransformatoren) eingesetzt, die die hohen Spannungen auf elektronischem Wege erzeugen. Es gibt Inverter mit Ferrittransformator und solche mit piezoelektrischen Transformatoren. Letztere arbeiten nach dem Piezoeffekt und sind für Notebooks entwickelt worden.

Bedenken beim Einsatz von Umrüstadaptern

Normalerweise sind von allen Leuchtenherstellern produzierte Leuchten für T8- (T26-) Leuchtstofflampen nicht für den Einsatz von T5- (T16-) Lampenadaptern vorgesehen und geprüft. Dies ist auf dem Typenschild und, wenn vorhanden, auf dem Bestückungsetikett durch die Angaben zur Lampe und deren Leistung eindeutig dokumentiert. Werden nachträglich anstatt der vorgesehenen Lampe andere Leuchtmittel verwendet, ist dies kein bestimmungsgemäßer Gebrauch der Leuchte und unterliegt deshalb nicht mehr der Verantwortung (Garantie und Produkthaftung) der Leuchtenhersteller. Die Herstellerverantwortung der von dem Umbau betroffenen Leuchte geht auf den für den Umbau Verantwortlichen über. Eine erneute Herstellerkennzeichnung und Konformitätsbewertung nach geltenden deutschen und europäischen Richtlinien ist nach dem Umbau zwingend erforderlich. Neben den unten angesprochenen Problemen traten bei einigen auf dem Markt angebotenen Modellen wiederholt technische Probleme auf, die mehrfach zu Vertriebsverboten durch die Bundesnetzagentur oder zu Untersagungsverfügungen durch Behörden geführt haben. Auch der Branchenverband ZVEI warnt generell vor einem Einsatz einiger Adapter.[19][20] Ebenso raten Hersteller von Lampen[21] und Leuchten von einem Einsatz ab. Messtechnische Untersuchungen in der Schweiz weisen keine Sinnhaftigkeit der Umrüstung nach.[22]

Ersatz von Leuchtstofflampen durch LED-Röhren

Im Handel werden LED-Röhren als Ersatz von Leuchtstofflampen angeboten. Neben der eigentlichen Lampe kann ein Austausch von Vorschaltgerät, Starter, Verkabelung oder Kombinationen daraus erforderlich werden. Wird der Starter ausgetauscht, werden zumeist Starter mit interner Kurzschlussbrücke verwendet. Ebenso kann eine Seite der beidseitig gesockelten LED-Lampe eine Kurzschlussbrücke besitzen. Dabei wird die andere Seite zur Zuführung der Betriebsspannung verwendet. Wird das alte Vorschaltgerät nicht ausgetauscht, ist dies eine im Stromkreis geduldete Altlast, die brummt sowie zusätzliche Verluste und magnetische Wechselfelder verursacht. Ein Entfernen des Vorschaltgerätes erfordert einen Umbau der Leuchte. Daneben werden auch Systeme mit Austausch des Vorschaltgerätes angeboten. Rechtlich gesehen erlischt bei Umbau die Herstellergarantie und der Umbauende wird zum Leuchtenhersteller im Sinne des Produkthaftungsgesetzes. Auch photometrische Eigenschaften der Leuchte werden durch den Umbau verändert.

Induktionslampe

Eigenschaften

Lichtfarbe

Typisches Spektrum
Spektrum einer Tageslichtlampe
Spektrum einer Leuchtstofflampe. Die Zahlen geben die Wellenlänge der Spektrallinien des Quecksilbers an. Angeregt durch die UV-Strahlung des Quecksilbers emittieren die Leuchtstoffe bei mehreren Farben im sichtbaren Bereich.

Hauptartikel: Lichtfarbe, Farbwiedergabeindex

Leuchtstofflampen weisen im Gegensatz zur Glühlampe kein kontinuierliches Farbspektrum auf. Es gibt eine Auswahl zwischen etwa einem Dutzend Farben, davon viele unterschiedliche Varianten von Weiß. Grob teilt man die weißen Leuchtstofflampen in warmweiß (engl. warm white), neutral-/kaltweiß (engl. cool white) und tageslichtweiß (engl. day light) ein. In vielen Anwendungsfällen bilden die neutral weißen Lampen einen guten Kompromiss, die kaltweißen oder tageslichtähnlichen haben Vorteile bei gleichzeitigem Tageslichteinfall, wogegen die warmweißen sich mit Glühlampenlicht besser vertragen. Leuchtstofflampen mit Standardleuchtstoffen (Halophosphaten) haben neben dem Vorteil eines günstigen Preises aber den großen Nachteil einer schlechten Farbwiedergabe bei relativ geringer Lichtausbeute. Deutlich verbessert im Hinblick auf die Farbwiedergabe und den erzielten Lichtstrom sind die Dreibandenleuchtstofflampen[23]. Hierbei besteht die Leuchtstoffbeschichtung aus einer Mischung von drei Leuchtstoffen, die im roten, grünen, und blauen Bereich des sichtbaren Spektrums relativ scharfbandige Emissionen zeigen und deren Spektren sich entsprechend dem Prinzip der additiven Farbmischung in der Lampe zu weißem Licht addieren. Die beste Farbwiedergabe haben sogenannte Vollspektrumleuchtstofflampen – hier treten die geringsten Farbverfälschungen auf. Das Spektrum ist tageslichtähnlich und fast ebenso kontinuierlich. Dies wird durch Einsatz von mindestens vier unterschiedlichen Leuchtstoffen erreicht (Fünfbandenleuchtstofflampen).

Die Farbwiedergabe von Lampen wird durch den Farbwiedergabeindex beschrieben.

Die farbliche Zusammensetzung des Lichtes wird bei Leuchtstofflampen wesentlich durch die Zusammensetzung der Beschichtung des Glases, zu einem Teil aber auch durch die primären Emissionslinien der Gasfüllung und deren Hindurchtreten durch den Leuchtstoff und das Glas bestimmt. Die Leuchtstoffbeschichtung besteht aus kristallinen Pulvern (vorwiegend anorganische Oxide), die im Falle von Dreibanden-Leuchtstoffen Spuren von zwei- oder dreiwertigen Lanthanoidkationen enthalten, welche je nach eingesetztem Lanthanoid und des zugrundeliegenden Wirtsgittersystems unterschiedliche Farben erzeugen. Diese Farben ergeben additiv die Leuchtfarbe der Lampe. Die Standardleuchtstoffe basieren auf Calciumhalophosphat der allgemeinen Formel Ca10(PO4)6(F,Cl):Sb,Mn, wobei die unterschiedliche Farbtemperatur durch Variation der Konzentration beider Dotierelemente Mangan (Mn) und Antimon (Sb) erzielt wird.

Die Farbtemperatur ist von der Raumtemperatur abhängig. Gewöhnliche Leuchtstofflampen sind für eine Raumtemperatur von etwa 20 °C ausgelegt, bei dieser Raumtemperatur erwärmen sie sich auf knapp 35 °C. Wird diese Temperatur wesentlich unterschritten, beginnt das Argon stärker zu leuchten, und die Leuchtstofflampe sendet mehr infrarotes Licht aus. Für Anwendungen im Außenbereich und in Kühlanlagen gibt es spezielle Leuchtstofflampen für niedrige Umgebungstemperaturen. Bei großer Kälte (um −25 °C) hat eine Straßenbeleuchtung mit Leuchtstofflampen eine deutlich reduzierte Helligkeit.

Die Lichtfarbe der Lampen ist für die Wohnqualität mit von Bedeutung. Auch die Lichtfarben sind den verschiedenen Arbeitsaufgaben bzw. Arbeitsstätten zugeordnet. Weißes Licht ist gemäß DIN 5035 in drei Farbtemperaturbereiche eingeteilt:

Abkürzung Bezeichnung Farbtemperatur Anwendung
ww Warmweiß / warm white < 3300 K Konferenz- u. Büroräume, Gasträume, Wohnräume
nw Neutralweiß / cool white 3300 … 5300 K Schulen, Büros, Werkstätten, Ausstellungsräume
tw Tageslicht / day light > 5300 K Tageslichtersatz in geschlossenen Räumen und für technische Anwendungen

Die Farbe „nw“ wird am häufigsten ausgewählt. In einem Raum sollte stets die gleiche Lichtfarbe eingesetzt werden. Die Hersteller nutzen ein Farbnummernsystem mit 3-stelligen Zahlen, bei denen die erste Ziffer die Farbwiedergabequalität angibt. Eine 8 bedeutet einen Ra-Wert von 80 bis 89, eine 9 bedeutet einen Ra-Wert von 90 bis 100. Die beiden letzten Ziffern bezeichnen – wenn man sie um zwei Nullen verlängert – die Farbtemperatur in Kelvin. Für den Wohnbereich kann z. B. die Farbnummer 827 oder 930 gewählt werden. Im Büro ist 840 üblich, wobei 854, 865 oder gar 880 laut einiger Studien zu gesteigerter Leistungsfähigkeit führen sollen, da das Licht tageslichtähnlicher ist und entsprechend mehr blaue Anteile enthält.

Leuchtstofflampen mit einer Farbwiedergabe unter 80 sollten rein technisch als veraltet angesehen werden. Jedoch kommen Lampen mit den Farbkennungen 640 und 740 in vielen Gemeinden nach wie vor in der Beleuchtung öffentlicher Plätze zum Einsatz, da sie zu einem günstigeren Preis erhältlich sind als Dreibandenlampen mit der Kennung 840. Aufgrund der Nachfrage gibt es somit für die Beleuchtungsindustrie vorerst keinen Grund, die Produktion einzustellen. Lediglich die Lichtfarbe 530 wird auf dem Markt immer seltener. Folgende Farbtöne sind erhältlich (die Namen der Lichtfarben stammen aus dem Katalog von Osram und können bei anderen Herstellern variieren, die Nummern sind jedoch genormt):

Code Bezeichnung (Osram) Eigenschaften Anwendung
Farbwiedergabe Lichtausbeute
(lm/W für T8, 36W)
Weiteres
530 Basic warmweiß / warm white schlecht (typisch Ra=58) mäßig Warmes Licht. Objekte erscheinen bräunlich und wenig kontrastiert. Garagen, Küchen. Selten geworden – zu Gunsten der Farben 827 und 830.
640 Basic neutralweiß / cool white mäßig mäßig (79)[24] Kühleres Arbeitslicht Sehr häufig eingesetzt. Büros, Arbeitsräume, Bahnhöfe, Außenbeleuchtung. Sollte durch 840-Lampen ersetzt werden.
740 mäßig mäßig
765 Basic Tageslicht / daylight mäßig schlecht (69)[24] Bläulicher Tageslichtersatz Vor allem in Büros oder hinter Werbeplakaten. Sollte durch 865-Lampen ersetzt werden.
827 Lumilux interna gut sehr gut (93)[24][25] Glühlampenähnliches Licht Wohnräume, Schlafzimmer, Kinderzimmer.
830 Lumilux warmweiß / warm white gut sehr gut (93)[24][25] Halogenlampenähnliches Licht Annähernd wie 827, etwas mehr Blauanteile. In Norddeutschland als Straßenbeleuchtung.
835 Lumilux weiß / white gut sehr gut (93)[24] Weißes Licht Etwas kühler als 830 – etwa für Küchen- oder Außenbeleuchtung. In Westdeutschland eher selten.
840 Lumilux neutralweiß / cool white sehr gut sehr gut (93)[24][25] Weißes Arbeitslicht Büros und öffentliche Gebäude, Außenbeleuchtung. Wird in Nordeuropa von vielen Menschen als zu kühl für Wohnräume empfunden.
865 Lumilux Tageslicht / daylight sehr gut gut (90)[24][25] Tageslichtersatz Angeblich leistungssteigerndes Arbeitslicht. Büros und Außenbeleuchtung.
880 Lumilux skywhite gut mäßig (81–84)[24][26] Blaues Licht, das einem wolkenlosen Himmel entspricht. Melanopisch wirksame Beleuchtung: Beeinflussung circadianer Rhythmen, Aktivierung
930 Lumilux Deluxe warmweiß / warm white hervorragend mäßig (75–78)[24][27] Warmes Licht Wohnräume, in denen farblich akzentuiert werden soll.
940 Lumilux Deluxe neutralweiß / cool white hervorragend mäßig (78–81)[24][27] Kühles Arbeitslicht Arbeitsplätze, an denen Farbakzente wichtig sind. Museen, Galerien.
950 Color Proof Tageslicht / daylight hervorragend
auch: Vollspektrumfarbwiedergabe (97–98)[24][27]
mäßig (78)[27]
Vollspektrumfarbwiedergabe: schlecht (64–65)[24][28]
Tageslichtersatz Museen, Galerien, Aquarienbeleuchtung.
Vollspektrumfarbwiedergabe: Druckindustrie, Fotolabore, graphische Industrie.[29][28]
954 Lumilux Deluxe Tageslicht / daylight hervorragend mäßig (79)[24] Tageslichtersatz Museen, Galerien, Aquarienbeleuchtung.
965 Lumilux Deluxe Tageslicht / cool daylight hervorragend
auch: Vollspektrumfarbwiedergabe (98)[24]
mäßig (78–79)[24][27]
Vollspektrumfarbwiedergabe: schlecht (58)[28]
Tageslichtersatz Museen, Galerien, Aquarienbeleuchtung. Etwas kühler als 954.
Vollspektrumfarbwiedergabe: Druckindustrie, Fotolabore, graphische Industrie.[28]

Eine Leuchtstofflampe mit der Voraussetzung einer Farbwiedergabe über 90 (Klasse 1A) büßt im niedrigeren Farbtemperaturbereich noch deutlich mehr Lichtausbeute ein als im höheren. Eine Lampe mit Dreibandenleuchtstoffen der Farbe 840 und 36 Watt Leistung erreicht einen Lichtstrom von ca. 3350 Lumen (Osram Lumilux T8). Die entsprechende Lampe der Farbe 940 (Lumilux De Luxe) erreicht 2900 Lumen, die Lampe der Farbe 954 etwa 2850 Lumen, und diejenige der Farbe 930 nur noch rund 2700 Lumen.

Farbige Leuchtstofflampen

„Schwarzlichtlampe“ (UV-A) und darunter eine klare UV-C-Lampe ohne Leuchtstoff

Leuchtstofflampen und Energiesparlampen werden u. a. zu Dekorationszwecken auch einfarbig (rot, gelb, grün, blau) angeboten. Das wird durch Variationen des fluoreszierenden Leuchtstoffes erreicht. Siehe auch: LHGL-Wanne.

Auch die sogenannten „Schwarzlichtlampen“ arbeiten mit einem Leuchtstoff (Europium-dotiertes Strontiumfluoroborat oder -tetraborat für 370 nm bzw. bleidotiertes Bariumsilikat für 350 nm), um die in UV-B liegende Quecksilberlinie in den UV-A-Bereich zu konvertieren. Diese Lampen haben ein mit Nickeloxid dotiertes Glasrohr, um sichtbares Licht > 400 nm zu absorbieren.

Sprachliche Unterscheidung

Leuchtstofflampen oder -röhren werden umgangssprachlich mitunter fälschlich als Neonröhren bezeichnet, die historisch als erster Leuchtröhrentyp entwickelt worden sind. Eine (fachsprachlich echte) Neonröhre ist in ihrer reinen Form nur mit Neon gefüllt, das orange-rot leuchtet und weist – im Gegensatz zu Leuchtstofflampen – weder Quecksilberdampf noch Leuchtstoff an der Glasinnenwand auf. Das Glasrohr mit nur 1 bis 2 cm Durchmesser kann klar oder rot gefärbt sein, kommt nicht in Standardgrößen und wird wegen der hohen Betriebsspannung nicht von Nutzern selbst getauscht. Mit anderen Gasen, zumeist Edelgasen und Gasmischungen, selten auch unter Beimischung von etwas Quecksilberdampf, mitunter auch unter Verwendung eines Leuchtstoffbelags, werden andere, insbesondere kräftige Farben, aber auch Weiß erzielt.

Energieeffizienz

Leuchtstofflampen erreichen eine Lichtausbeute von etwa 45 bis 100 Lumen pro Watt (zum Vergleich: normale Glühlampe: ca. 10–15 lm/W) und haben somit eine vergleichsweise hohe Energieeffizienz; diese wird von Schwefellampen (95 lm/W) und Natriumdampflampen (150 lm/W) – bei schlechterem Farbwiedergabeindex – und Metallhalogendampf-Hochdruckentladungslampen (etwa 95 lm/W) übertroffen. Auch moderne LEDs erreichen eine höhere Effizienz als Leuchtstoffröhren (>100 lm/W).[30][31]

Leuchtstofflampen sparen somit gegenüber Glühlampen etwa 70 bis 85 % Energie ein. In Messeinrichtungen werden neue Leuchtstofflampen erst 100 bis 200 Stunden gealtert, die Messung erfolgt erst etwa 10 bis 20 Minuten (je nach Typ) nach dem Einschalten.

Alle Leuchtstofflampen erreichen ihren höheren Betriebsdruck erst nach Erwärmung und erreichen daher ihre volle Leuchtkraft nach einigen Sekunden. Deutlicher ist dieser Effekt bei Kompaktleuchtstofflampen zu beobachten, da diese mit höheren Betriebsdrücken bzw. Temperaturen arbeiten. Insbesondere bei sehr niedriger Umgebungstemperatur und ohne ein umgebendes Leuchtengehäuse bleibt die Leuchtstärke von Leuchtstofflampen zum Teil deutlich geringer als bei Raumtemperatur. Aus diesem Grund werden für Beleuchtungen im Außenbereich oder in Kühlräumen spezielle Leuchtstofflampen verwendet, die auch bei Umgebungstemperaturen deutlich unter circa 25 °C eine akzeptable Lichtausbeute liefern. Die maximale und die typische Ausbeute liegen deutlich unter der normaler, hocheffizienter Leuchtstofflampen. Ähnliche Effekte gibt es bei Vollspektrumleuchtstofflampen; deren besondere Leuchtstoffzusammensetzung ermöglicht – zu Lasten der Effizienz – ein einem thermischen Strahler angenähertes Spektrum. Hierzu erweisen sich aber gerade in Kühlräumen heute geeignete LED-Lampen als das geeignete energiesparende Beleuchtungsmittel, da zusätzlich zur hohen Energieeffizienz der LED weniger Verlustwärme durch die Klimaanlage abgeführt werden muss.

Der etwa vier- bis sechsfach höheren Lichtausbeute von Leuchtstofflampen im Vergleich zu Glühlampen stehen ein höherer Anschaffungspreis (der sich während des Betriebes amortisiert), eine schlechtere Farbwiedergabe, bei manchen Exemplaren je nach Vorschaltgerät Brumm- oder Pfeifgeräusche und das verzögerte Erreichen der vollen Helligkeit gegenüber.

Lebensdauer

Leuchtstofflampen zeichnen sich durch eine sehr lange Lebensdauer aus, die durch die Adsorption des Quecksilbers an den Lampenkomponenten, durch Zersetzung des Leuchtstoffes und durch die Lebensdauer der Glühkathoden begrenzt ist.

Herkömmliche Leuchtstofflampen (T8, Halophosphat) haben eine echte Nutzlebensdauer von 6000 bis 8000 Stunden an einem konventionellen Vorschaltgerät. Eine moderne Leuchtstofflampe (T5 und T8, Tri-Phosphor) erreicht eine Nutzleuchtdauer von 15.000 Stunden am VVG und bis 25.000 Stunden am EVG, Spezialversionen sogar bis zu 80.000 Stunden.[32] Eine Kompaktleuchtstofflampe erreicht eine Nutzleuchtdauer von meist zwischen 5000 und 15.000 Stunden (zum Vergleich: konventionelle Glühlampen haben eine Lebensdauer von etwa 1000 Stunden). Nach dieser Zeit sollten die Lampen ausgetauscht werden, da sie weniger als 80 % des ursprünglichen Lichtstromes aussenden. In dieser Zeit haben sie sich allerdings durch die reduzierten Stromkosten mehrfach bezahlt gemacht. Neuere Leuchtstoffe erlauben einen Betrieb bis zum Versagen der Kathoden, da sie auch dann noch 80 % des ursprünglichen Lichtstromes liefern.

Besonders wichtig ist vor allem bei T5-Leuchtmittel die Lage des Cool-Spot (hinter der Stempelung) in der Leuchte, dieser muss z. B. bei Senkrechtmontage unten sein, in der waagrechten Brennlage nach Leuchtenherstellervorgabe.

Für die Verbesserung der Funktion bei tieferen Temperaturen gibt es den Cool-Spot-Optimizer [33] oder Hüllrohre.

Zur Erreichung der Nennlebensdauer müssen Dimmleuchtmittel vor der Nutzung 100 Stunden lang eingebrannt werden.[34]

Um die angestrebte Lebensdauer zu erreichen, sollten möglichst wenig Schaltvorgänge stattfinden und bei jedem Einschaltvorgang die Kathoden vorheizen (Warmstart), da ein Kaltstart die Lebensdauer stark verringert. Zusätzlich sollte eine gute Netzfilterung vorhanden sein, die sich aus einem Prüfzertifikat (des VDE/TÜV oder einer anderen Zulassungsstelle) des EVG ergibt.

Leuchtstofflampen (heiße Kathode) eignen sich nur bedingt für wiederholte Schaltvorgänge und kurze Brenndauern unter 10 Minuten, eine solche Betriebsweise verschleißt die Kathoden. Eine Ausnahme bilden neuere Typen von Energiesparlampen, die durch eine Steuerung der Vorheizphase statt für wenige 10.000 für mehrere 100.000 Schaltvorgänge ausgelegt sind.[35][36]

Kompaktleuchtstofflampen mit integriertem Vorschaltgerät (sog. Energiesparlampen) versagen häufig durch Ausfälle des elektronischen Vorschaltgerätes; dieses ist oft empfindlich gegenüber erhöhten Umgebungstemperaturen, was besonders in geschlossenen Leuchten zu Frühausfällen führt.

„Flimmern“ und Stroboskopeffekt

Bedingt durch die Netzfrequenz (50 bzw. 60 Hz) erlischt das Lampenlicht bei konventionellen Vorschaltgeräten im Bereich eines jeden Nulldurchganges. Es entstehen Hell-Dunkel-Phasen im 100- bzw. 120-Hz-Rhythmus („Flimmern“), die Stroboskopeffekte hervorrufen können, welche sich bei schnellen Bewegungen bemerkbar machen oder bei rotierenden Arbeitsmaschinen eine langsame oder stehende Maschine vortäuschen können. Das Flimmern führt außerdem zu schnellerer Ermüdung. Eine Verbesserung bringt die Duoschaltung oder bei großen Anlagen die Versorgung mit Dreiphasenwechselstrom (Drehstrom), wodurch mehrere Lampen ihr Licht phasenverschoben abgeben.

Elektronische Vorschaltgeräte (auch die Aufsteck-EVGs, die zum Umrüsten von T8-Leuchten mit konventionellem Vorschaltgerät auf T5-Lampen kleinerer Leistung angeboten werden) können nahezu flimmerfreies Licht liefern, da sie die Lampe mit Wechselstrom einer höheren Frequenz (typischerweise 45.000 Hz) betreiben. Die dadurch entstehende hochfrequente Helligkeitsschwankung (90.000 Hz) ist vom menschlichen Auge nicht wahrnehmbar, zumal sie durch das Nachleuchten des Leuchtstoffes noch gedämpft wird. Je nach Qualität und Auslegung des EVG kann aber die Netzfrequenz die Amplitude des hochfrequenten Stroms mehr oder weniger modulieren, so dass ein Rest des 100- bzw. 120-Hz-Flimmerns verbleibt. Das betrifft vor allem Kompaktleuchtstofflampen mit integriertem, meist kostengünstig ausgelegtem EVG mit einem zu klein dimensionierten Glättungskondensator. Dieser kann außerdem aufgrund der hohen Umgebungstemperatur im Lampensockel, vor allem bei hängender Montage, relativ schnell austrocknen.

Aspekte des Umweltschutzes

Recycling

Das Quecksilber in Leuchtstofflampen ist giftig für Mensch und Umwelt, die Beschichtung der Lampe ebenfalls. Zudem sind die verwendeten Werkstoffe (Europium, Zinn, Kupfer) relativ teuer und können zurückgewonnen werden, weshalb ausgediente Leuchtstofflampen nicht über Hausmüll oder Altglas entsorgt werden dürfen. Innerhalb der EU ist das Recycling von Leuchtstofflampen und anderen Leuchtmitteln durch die WEEE-Richtlinie geregelt. Leuchtstofflampen aus Privathaushalten müssen bei einer Sammelstelle (Recyclinghof, Wertstoffhof) abgegeben werden. Die Regelung für Leuchtstofflampen aus dem gewerblichen Bereich ist in den einzelnen EU-Mitgliedsstaaten unterschiedlich. In Deutschland soll die Rücknahme durch den Hersteller erfolgen, haushaltsübliche Mengen können aber auch über die öffentlichen Sammelstellen entsorgt werden, geregelt wird das vom ElektroG.

Elektrosmog und elektromagnetische Verträglichkeit

Grundsätzlich müssen Leuchtstofflampen und die für diese konstruierten Leuchten, wie alle anderen im Handel erhältlichen elektrischen Geräte, Grenzwerte der elektromagnetischen Verträglichkeit erfüllen. Dies wird durch die auf den Geräten angebrachte CE-Kennzeichnung dokumentiert. Damit sind Störaussendungen auf ein Maß begrenzt, bei dem eine Beeinträchtigung anderer Geräte hinnehmbar (weil gering oder kurzzeitig) ist. Generell muss berücksichtigt werden, dass konventionelle Glühlampen vergleichbarer Lichtleistung durch ihre erheblich höhere elektrische Leistung in den Kabeln der Stromversorgung auch ein entsprechend höheres magnetisches Feld generieren. Dieses folgt aus der Proportionalität zwischen elektrischem Strom und der magnetischen Feldstärke.

Die nachfolgend aufgelisteten Störungen sind möglich:

  • Leuchtstofflampen mit elektronischem Vorschaltgerät erzeugen durch den darin befindlichen Inverter breitbandige hochfrequente Strahlung, die von der Lampe und deren Zuleitungen abgestrahlt werden. Maßgeblich sind dabei die Arbeitsfrequenzen von meist knapp unterhalb 50 kHz sowie deren Harmonische (Oberschwingungen).
  • Auch Leuchtstofflampen mit konventionellem Vorschaltgerät geben ein breitbandiges Störspektrum im Bereich des AM-Rundfunks ab. Gestört werden können unter anderem Rundfunkempfänger für Lang-, Mittel- und Kurzwelle.
  • Störend kann sich der Startvorgang konventioneller Leuchtstofflampen auch auf Audioanlagen auswirken – der generierte breitbandige Störimpuls breitet sich auf den Netzleitungen aus und gelangt meist kapazitiv auf verschiedenen Wegen in Signalzuleitungen und Verstärker. Die wirksamste Maßnahme dagegen und auch gegen die breitbandigen Störungen im Betrieb ist die sog. Nahentstörung in der Leuchte (Kondensator im Glimmstarter) oder ein Netzfilter vor der Leuchte oder den gestörten Verbrauchern.
  • Gelegentlich stört durch EVGs erzeugtes Licht die IR-Empfänger der Fernbedienung von Geräten der Unterhaltungselektronik, da deren Arbeitsfrequenzen ähnlich sind.

Elektrosmog ist ein umgangssprachlicher Begriff, der nichtionisierende Strahlung (Funkwellen) und elektrische sowie magnetische Felder und deren unterstellte gesundheitliche Beeinträchtigungen umfasst. Insbesondere konventionelle Vorschaltgeräte erzeugen ein magnetisches Streufeld mit einer Frequenz von 50 Hz. Die Auswirkungen von Elektrosmog auf die Gesundheit sind stark umstritten.

Teilweises Verkaufsverbot in der EU

Wie Glühlampen sind auch bestimmte Leuchtstofflampen von dem Verkaufsverbot in der EU betroffen. Das Verbot ist in der EG-Verordnung 245/2009[37] geregelt, die der Umsetzung der Ökodesign-Richtlinie 2005/32/EG dient und tritt in drei Stufen in Kraft:

Bei der ersten Stufe ab April 2010 gelten Mindestwerte für die Lichtausbeute und Farbwiedergabe von T8- und T5-Lampen, weniger effiziente Lampen dieser Typen dürfen nicht mehr in Verkehr gebracht werden. Gleichzeitig müssen Hersteller detaillierte technische Angaben zu allen Lampen veröffentlichen. Ab der zweiten Stufe ab April 2012 gelten die Werte auch für alle anderen Zweisockellampen (z. B. T10 und T12), was ein faktisches Verbot der T12-Lampen bedeutet. Gleichzeitig treten Anforderungen an die Lebensdauer und den Rückgang des Lichtstroms während des Betriebs in Kraft. Die dritte Stufe fordert ab April 2017, dass alle Leuchtstofflampen mit Vorschaltgeräten der Energieeffizienzklasse A2 kompatibel sein müssen.[38]

Ähnliche Leuchtmittel

Wegen ihrer ähnlichen Bauform werden Linienlampen häufig für Leuchtstofflampen gehalten. Die Lichterzeugung bei Linienlampen erfolgt aber nicht durch Gasentladung, sondern durch einen Glühfaden, es handelt sich somit um Glühlampen.

Literatur

  • A. Senner: Fachkunde Elektrotechnik. 4. Auflage. Verlag-Europa Lehrmittel, Wuppertal 1965.
  • Hans R. Ris: Beleuchtungstechnik für den Praktiker. 2. Auflage, VDE-Verlags GmbH, Berlin/Offenbach 1997, ISBN 3-8007-2163-5.
  • Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag-Europa Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9.
  • Ernst Hörnemann, Heinrich Hübscher: Elektrotechnik Fachbildung Industrieelektronik. Westermann Schulbuchverlag GmbH, Braunschweig 1998, ISBN 3-14-221730-4.
  • Osram: EVG für T5-Lampen, Technische Fibel, München (2005), Online-Version (PDF), abgerufen am 25. November 2012
  • Umrüstung auf LED : Umrüstung einer Leuchtstoffröhre T8 G13 - mit Starter nach E DIN 62776:2012-02

Weblinks

Wiktionary: Leuchtstoffröhre – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Leuchtstofflampe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Griesheim
  2. Ratgeber Licht (PDF; 163 kB) der Stadt Hamburg, Seite 3.
  3. DIN EN 60081 (2006-05). Beuth Verlag, 2006.
  4. DIN EN 60901 (2008-09). Beuth Verlag, 2008.
  5. http://www.energieverbraucher.de/files_db/dl_mg_1082979502.pdf Radiologische Beurteilung von Startern für Leuchtstofflampen mit Kr-85-haltigem Füllgas
  6. http://www.st.com/web/en/resource/technical/document/datasheet/CD00000866.pdf abgerufen am 31. Januar 2015
  7. http://www.bourns.com/data/global/pdfs/BY1112c.pdf abgerufen am 31. Januar 2015
  8. http://www.datasheetlib.com/datasheet/644430/the-fluoractor-y1112l_power-innovations.html?page=2#datasheet abgerufen am 31. Januar 2015
  9. Vgl. Funktionsbeschreibung zum Stand der Technik in Europäische Patentschrift EP0552687B1 http://patentimages.storage.googleapis.com/pdfs/5f6e671cc53f26e23b82/EP0552687B1.pdf abgerufen am 4. Februar 2015
  10. Palmstep: http://www.palmstep.com/html/de/starter/index.htm abgerufen am 31. Januar 2012
  11. Osram: http://www.osram.de/osram_de/Professionals/EVG/EVG_fuer_FL_und_CFL/EVG_mit_Dimmfunktion_und_DALI/index.html, abgerufen am 31. Januar 2012
  12. Vossloh-Schwabe: http://old.vossloh-schwabe.com/images/onecms/site/publications/VS_A2-VVG-Starter-System_GB.pdf, abgerufen am 31. Januar 2012
  13. Enerlux: http://www.enlux.com/en/productche.asp?id=31, abgerufen am 31. Januar 2012
  14. Helvar: http://www.helvar.com/download.asp?id=ELscDE%2Epdf;2531;{9C30FEBD-473C-4DD5-9E9E-AE30370F5ECC} , abgerufen am 31. Januar 2012
  15. Vorsicht bei T5-Adaptern für T8-Leuchten. ZVEI, , abgerufen am 11. Februar 2010.
  16. Gewährleisten T5-Adapter für T8-Leuchten sicheres und normgerechtes Licht? (PDF; 191 kB) ZVEI, , abgerufen am 11. Februar 2010.
  17. OSRAM-Stellungnahme zu T5-Umrüstadaptern. (PDF) Osram, , S. 15, abgerufen am 11. Februar 2010.
  18. BFE (PDF), abgefragt am 2. Februar 2012
  19. Vorsicht bei T5-Adaptern für T8-Leuchten. ZVEI, , abgerufen am 11. Februar 2010.
  20. Gewährleisten T5-Adapter für T8-Leuchten sicheres und normgerechtes Licht? (PDF; 191 kB) ZVEI, , abgerufen am 11. Februar 2010.
  21. OSRAM-Stellungnahme zu T5-Umrüstadaptern. (PDF) Osram, , S. 15, abgerufen am 11. Februar 2010.
  22. BFE (PDF), abgefragt am 2. Februar 2012
  23. [1]Dreibandlichtfarben
  24. 24,00 24,01 24,02 24,03 24,04 24,05 24,06 24,07 24,08 24,09 24,10 24,11 24,12 24,13 24,14 Light can be white, white, white or white. Lichtfarben- und Lumenübersicht. Osram, August 2008, abgerufen am 27. Februar 2014.
  25. 25,0 25,1 25,2 25,3 Produktübersicht – Lampen, Vorschaltgeräte, Leuchten – Deutschland, Österreich, Schweiz – Frühjahr 2012. Philips, Dezember 2011, S. 25, abgerufen am 27. Februar 2014.
  26. LUMILUX T8 – L 36 W/880. Osram, abgerufen am 27. Februar 2014.
  27. 27,0 27,1 27,2 27,3 27,4 Produktübersicht – Lampen, Vorschaltgeräte, Leuchten – Deutschland, Österreich, Schweiz – Frühjahr 2012. Philips, Dezember 2011, S. 30, abgerufen am 27. Februar 2014.
  28. 28,0 28,1 28,2 28,3 Produktübersicht – Lampen, Vorschaltgeräte, Leuchten – Deutschland, Österreich, Schweiz – Frühjahr 2012. Philips, Dezember 2011, S. 31, abgerufen am 27. Februar 2014.
  29. OSRAM COLOR proof: The first fluorescent lamp for absolutely correct color balance. Osram, September 2009, abgerufen am 27. Februar 2014.
  30. Kurzdaten der LED vom Typ XLamp XP-G2 von Cree [2]
  31. Kurzdaten des LED-Arrays vom Typ NSB066A von Nichia [3]
  32. Philips Katalog
  33. Zumtobel: [4], abgerufen am 2. Februar 2012
  34. Osram: PDF, abgerufen am 31. Januar 2012
  35. Megaman: Produktseite der ingenium-Technologie. abgerufen am 13. Jan. 2009.
  36. Osram: Produktseite der Osram Dulux EL Facility. abgerufen am 13. Jan. 2009.
  37. VERORDNUNG (EG) Nr. 245/2009 (…) umweltgerechte Gestaltung von Leuchtstofflampen ohne eingebautes Vorschaltgerät, Hochdruckentladungslampen sowie Vorschaltgeräte und Leuchten zu ihrem Betrieb (…). In: Amtsblatt der Europäischen Union. , abgerufen am 16. Juli 2009 (deutsch).
  38. Auflistung mit Tabelle aller durch das EU Verkaufsverbot betroffenen Leuchtstofflampen [5]
Dieser Artikel basiert ursprünglich auf dem Artikel Leuchtstofflampe aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.