Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Glucagon

Aus Jewiki
Zur Navigation springen Zur Suche springen

. Glucagon (auch Glukagon) ist ein Peptidhormon, dessen Hauptwirkung die Erhöhung des Blutzuckerspiegels durch Anregung der Bildung von energiereicher Glucose aus Glykogen in der Leber ist. Es wird aus den Präkursoren Präglucagon und Präproglucagon in den Langerhans-Inseln der Bauchspeicheldrüse (α-Inselzellen) gebildet. Bei Blutzuckerabfall, aber auch nach einer proteinreichen Mahlzeit wird Glucagon von der Bauchspeicheldrüse in die Blutbahn abgegeben und dort frei transportiert. Dieses Hormon ist in seiner Wirkung auf den Glucose-, Protein- und Fettsäurestoffwechsel ein Gegenspieler des Insulins. Glucagon wird von der Leber aufgenommen und durch Spaltung inaktiviert.

Geschichte

Die Existenz des Pankreashormons Glucagon als hyperglykämischem Faktor wurde 1923 zum ersten Mal von John Raymund Murlin postuliert. Doch erst im Jahre 1953 konnte Anne-Marie Staub die Reinsubstanz gewinnen und isolieren. Die unten aufgezeichnete Sequenzierung erschloss 1956 William Wallis Bromer. Positive Effekte auf die Herzleistung wurden 1960 von Ronald Ralph Tuttle und Alfed Emil Farah erforscht sowie belegt. In der Vergangenheit wurde das Glucagon v. a. bei einem kardiogenen Schock angewendet.[1]

Struktur

Aus dem Glucagon-Vorläuferprotein von 180 Aminosäuren werden neben Glucagon auch 7 weitere Peptide gebildet - Glicentin, Glicentin-related polypeptide (GRPP), Oxyntomodulin, Glucagon-like peptide 1 (GLP-1, Inkretin-Hormon), Glucagon-like peptide 1 (7-37), Glucagon-like peptide 1 (7-36), Glucagon-like peptide 2 (GLP-2).[2] Die Primärstruktur des humanen Glucagons besteht aus 29 Aminosäuren mit einer Molekülmasse von 3483 Da. Die Primärstruktur lautet: His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr.[2]

Glucagonsekretion

Produktion von Glucagon (rot) in den Langerhans-Inseln

Bei normaler Ernährung bleibt die Sekretion von Glucagon im Vergleich zu der von Insulin relativ konstant. Die Stimuli für eine erhöhte Ausschüttung sind hauptsächlich Hypoglykämie (zu niedriger Blutzuckerspiegel), proteinreiche Mahlzeiten, Infusion von Aminosäuren (z. B. Arginin, Alanin), länger dauernde starke körperliche Arbeit und Stress. Bei Hypoglykämie kann die Glucagonsekretion auf das bis zu Vierfache gesteigert werden. Stimulation erfolgt durch β-Adrenorezeptoren. Seine Freisetzung wird von Insulin, Somatostatin und GLP-1 gehemmt.

Wirkungsmechanismus

Glucagon ist der Gegenspieler zu Insulin. Während Insulin die Glykogensynthese fördert, resultiert die Freisetzung von Glucagon in einem Abbau von Glykogen. Die Wirkung von Glucagon beruht auf der Bindung an einen G-Protein-gekoppelten Rezeptor. Das dadurch aktivierte Gs-Protein stimuliert die Adenylatcyclase (EC 4.6.1.1). Durch cAMP werden die Enzyme für den Glucose- und Fettstoffwechsel aktiviert. Als vorrangiger Effekt wird die Glykogenphosphorylase (EC 2.4.1.1) phosphoryliert, die den Glykogenabbau stimuliert und die Glykogensynthese hemmt.

Regulation des Glykogenmetabolismus. Adrenalin (Muskel) oder Glucagon (Leber) aktivieren einen G-Protein-gekoppelten Rezeptor (GPCR), an den ein Gs-Protein angedockt ist. Dessen α-Untereinheit hat GDP gebunden, welches anschließend mit GTP ausgetauscht wird. Dadurch wird die α-Untereinheit vom Rezeptor freigesetzt und aktiviert eine Adenylylcyclase (AC). Das dabei gebildete cAMP aktiviert eine Proteinkinase A (PKA), die wiederum die Phosphorylierung einer Phosphorylase-Kinase (PPK) katalysiert. Die dadurch stimulierte Kinase aktiviert katalytisch eine Glycogenphosphorylase (PYG), welche den Abbau von Glykogen zu Glucose-1-phosphat katalysiert. Proteinkinase A phosphoryliert gleichzeitig eine UDP-Glykogensynthase (GYS), welche dadurch inaktiviert wird und die Umkehrreaktion nicht mehr katalysieren kann.

Glucagon stimuliert nicht nur die Glykogenolyse, sondern auch die Neusynthese von Glucose (Gluconeogenese) aus Aminosäuren. Glucagon hat also eine proteinkatabole Wirkung, was zum Anstieg von Harnstoff im Blut führt. Außerdem werden über cAMP fettverdauende Enzyme (Lipasen) aktiviert, woraus eine Erhöhung der Fettsäuren im Blut resultiert.

Anwendung

Glucagon wird zur Ruhigstellung des Darmes eingesetzt und wird in dieser Funktion auch als intravenös zu verabreichendes Medikament verwendet. Als Gegenmittel bei Vergiftungen mit Betablockern und Calciumkanalblockern wird der Wirkstoff ebenfalls angewendet. Es wird auch beim Magenröntgen verwendet, um die Schleimhaut besser beurteilen zu können.[3]

Am Herzen bewirkt Glucagon neben einer Herzfrequenzsteigerung auch eine kurzfristige Zunahme der Kontraktionskraft des Herzmuskels.[4]

Außerdem besitzen viele insulinpflichtige Diabetiker ein Notfall-Set mit Glucagon und einem Lösungsmittel, das bei einer schweren Hypoglykämie mit Bewusstlosigkeit nach Auflösung der Pulversubstanz von einem eingewiesenen Helfer subkutan oder intramuskulär gespritzt wird und über den oben beschriebenen Wirkungsmechanismus eine Erhöhung des Blutzuckerspiegels erreichen soll. Glucagon wird vom Hersteller Novo Nordisk unter dem Handelsnamen GlucaGen® vertrieben.

Für eine im Jahr 2010 durchgeführte Studie wurde eine Insulinpumpe entwickelt, die neben der Insulinampulle eine Glucagonampulle beinhaltete. Durch eine beständige Glucose-Messung in einem Closed-Loop-System (Blutglukosemessung und Dosisabgabe erfolgen automatisch) wurde bei Unterzuckerungsgefahr Glucagon über die Pumpe abgegeben. Dadurch traten weniger und kürzer andauernde Hypoglykämien auf.[5]

Glucagon-Test (C-Peptid)

Es gibt einen Glucagontest, der im medizinischen Alltag allerdings nur selten verwendet wird. Er dient der Prüfung der Stimulierbarkeit der β-Zellen des Pankreas (Funktionsreserve) zur Unterscheidung von Diabetes Typ I und Typ II.

Durchführung

  1. Blutentnahme zur Bestimmung von C-Peptid basal. Gabe von 1 mg Glucagon i.v.
  2. Blutentnahme 6 min. nach Glucagon zur Messung des stimulierten C-Peptid-Spiegels (β-Zell-Funktionsreserve).

Beurteilung

  • Ein Anstieg des C-Peptids um mindestens 0,5 nmol/l und/oder auf mehr als 1,0 nmol/l deutet auf funktionsfähige β-Zellen.
  • Blutglucose sollte immer mitbestimmt werden, um den Grad der Vorstimulation der β-Zellen zu erkennen.

Siehe auch

Weblinks

Einzelnachweise

  1. Wolf-Dieter Müller-Jahncke, Christoph Friedrich, Ulrich Meyer: Arzneimittelgeschichte. 2., überarb. und erw. Auflage. Wiss. Verl-Ges, Stuttgart 2005, ISBN 3-8047-2113-3, S. 164.
  2. 2,0 2,1 GCG - Glucagon precursor - Homo sapiens (Human) - GCG gene & protein. In: uniprot.org. 20. Juni 2018, abgerufen am 24. Mai 2018 (english).
  3. Schweizerisches Toxikologisches Informationszentrum, Antidot-Monographie für Glucagon (PDF; 39 kB).
  4. Reinhard Larsen: Anästhesie und Intensivmedizin in Herz-, Thorax- und Gefäßchirurgie. (1. Auflage 1986) 5. Auflage. Springer, Berlin/ Heidelberg/ New York u. a. 1999, ISBN 3-540-65024-5, S. 57.
  5. Die Insulinpumpe zusätzlich mit Glucagon, diabetes-deutschland.de (abgerufen am 19. Juni 2011).
Dieser Artikel basiert ursprünglich auf dem Artikel Glucagon aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.