Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Fossile Energie

Aus Jewiki
Zur Navigation springen Zur Suche springen

Fossile Energie wird aus fossilen Brennstoffen gewonnen, die wie Braunkohle, Steinkohle, Torf, Erdgas und Erdöl in geologischer Vorzeit aus Abbauprodukten von toten Pflanzen und Tieren entstanden sind. Diese fossilen Energieträger basieren auf dem Kohlenstoffkreislauf und ermöglichen damit gespeicherte (Sonnen)energie vergangener Zeiten heute zu verwerten. Im Jahr 2005 wurden 81 % des weltweiten Energiebedarfs aus fossilen Quellen gedeckt.[1] Biomasse wird hingegen aus Holz und weiteren neuzeitlichen organischen Abfällen und Überresten gewonnen. Die technische Erschließung von fossilen Brennstoffen, zunächst fast ausschließlich Kohle, ermöglichte das Fortbestehen des kontinuierlichen Wirtschaftswachstums, das mit der Industriellen Revolution eingesetzt hatte.[2]

Die aufgeführten fossilen Brennstoffe basieren auf organischen Kohlenstoff-Verbindungen. Bei der Verbrennung mit Sauerstoff wird Energie in Form von Wärme und Kohlenstoffdioxid freigesetzt. Daher ist die Verbrennung fossiler Energieträger sowohl lokal wie auch global "in hohem Maße umweltbelastend".[3] Fossile Energieträger sind wichtige Mitverursacher der globalen Erwärmung.[4] Je nach Zusammensetzung und Reinheit des fossilen Brennstoffes resultieren auch andere chemische Verbindungen wie Stickstoffoxide und Ruß sowie unterschiedlich feine Stäube.

Der Gegenbegriff zu fossiler Energie ist erneuerbare Energie, die sich laufend erneuernden energetischen Prozessen entnommen wird. Hierzu gehören die Nutzung der Windenergie, der Sonneneinstrahlung (Sonnenkollektoren und Solarzellen), der Gewässerströmungen und die Nutzung von Biomasse. Gezeiten und Erdwärme werden ebenfalls unter der Rubrik geführt.

Vorräte

Die in der Erde lagernden Vorräte an fossilen Brennstoffen (Fossile Energieträger), die nachgewiesen, sicher verfügbar und mit heutiger Technik wirtschaftlich gewinnbar sind, bezeichnet man als Energiereserven. Gleichbleibenden Energiebedarf und gleichbleibende Nutzung unterstellt, reichen die derzeit bekannten Welt-Energiereserven an Erdöl und Erdgas 43 bzw. 66 Jahre und an Kohle circa 170 Jahre. Allerdings geht die Internationale Energieagentur davon aus, dass sich der weltweite Primärenergiebedarf zwischen 2008 und 2035 um 36 % erhöhen wird, jedoch nur, wenn energiepolitische Maßnahmen wie die Steigerung der Energieeffizienz, Ausbau der Erneuerbaren Energien usw. umgesetzt werden. In einem Vergleichszenario, das ohne diese Maßnahmen auskommt, liegt der Anstieg des Primärenergiebedarfs höher.[5]

Energieressource: Neben den Energiereserven gibt es nachgewiesene und vermutete Vorräte von Energieträgern (so genannte Energieressourcen), die jedoch derzeit aus technischen und/oder wirtschaftlichen Gründen noch nicht gewinnbar sind.

Die Reserven der fossilen Brennstoffe reichen wohl maximal noch etwa 200 Jahre. Beim Erdöl war die statische Reichweite 1919 nur noch etwa 20 Jahre und ist seither auf etwa 35 bis 40 Jahre gestiegen, da neue Vorkommen und verbesserte Abbaumaßnahmen hinzukamen.

Ein wichtiger Faktor ist neben der Reichweite der Zeitpunkt, an dem die Förderung nicht mehr gesteigert werden kann, sondern zurückzugehen beginnt. Da sich dadurch das Verhältnis von Angebot und Nachfrage verändert, kann dies stark steigende Preise zur Folge haben (Globales Ölfördermaximum).

Die Versorgungslücke kann durch geringeren Verbrauch und Alternativen wie Erneuerbare Energien oder Kernenergie gedeckt werden.

2012 wurden nach Angaben des Thinktanks Carbon Tracker unter Mitarbeit von Sir Nicholas Stern weltweit ca. 674 Mrd. $ in die Suche neuer fossiler Energieträger investiert, etwa 1 % der weltweiten Wirtschaftsleistung.[6][7]

So unsicher die Zahlen sind: Wenn das Zwei-Grad-Ziel für die globale Erwärmung erreicht werden soll, dürfen nicht einmal die bekannten leicht nutzbaren Vorräte verbrannt werden (siehe Zwei-Grad-Ziel#Höhe_der_notwendigen_Reduktionen).

Erdöl und Erdgas

Abgestorbene Kleinstlebewesen wurden auf dem Meeresgrund in einer Schlammschicht luftdicht eingeschlossen und von anderen Erdschichten überlagert, so dass im Laufe der Zeit (von etwa 500 Millionen Jahren) eine isolierte Schicht entstand.

Erdöl ist ein in der Erdkruste eingelagertes, hauptsächlich aus langkettigen Kohlenwasserstoffen bestehendes homogenes und lipophiles Stoffgemisch.

Das eventuell noch vorhandene Meerwasser verdunstet oder wird vom Sediment aufgenommen, während sich weitere Schichten ablagern. Da Kohlenwasserstoffe leichter sind als aufgelagerte Erd- und Gesteinsschichten, steigen sie darin hoch und sammeln sich unter undurchlässigen Erdschichten, wobei die gasförmigen Kohlenwasserstoffe (hauptsächlich Methan) in der Regel als Erdgas über dem flüssigen Erdöl eingeschlossen sind.

Rohes Erdöl (Rohöl) stellt mit mehr als 17.000 Bestandteilen eine der komplexesten Mischungen an organischen Stoffen dar, die natürlicherweise auf der Erde vorkommen.

Kohle

Kohle (von altgerm. kolo = „Kohle“) ist ein schwarzes oder bräunlich-schwarzes, festes biogenes Sedimentgestein, das zu mehr als 50 Prozent des Gewichtes und mehr als 70 Prozent seines Volumens aus Kohlenstoff besteht. Steinkohle wird wie Erdöl auch Schwarzes Gold genannt. Kohle ist eine Energiequelle und wird vom Menschen als fossiler Brennstoff verwendet. Sie entsteht aus pflanzlichen Überresten, die unter Luftabschluss – z. B. am Grund von Sümpfen und Mooren - nicht verrotten können und später extremem Druck und Hitze ausgesetzt sind.

Als hochwertigste Kohle gilt die Steinkohle, da diese sehr dicht und rein ist, das heißt, sehr wenig Fremdstoffe enthält. Der Brennwert der Steinkohle ist dementsprechend groß. Etwas minderwertiger ist die Braunkohle, die schwächer verdichtet ist und einen größeren Schwefelanteil enthält; ihr Brennwert ist deutlich geringer.

Faktoren der Verfügbarkeit fossiler Energiereserven

  • Größe der Energiereserve
  • Effektivität bei der Nutzbarkeit der Energie
  • Umfang des Verbrauchs
  • Ausweichen auf regenerative Ressourcen

Vor- und Nachteile fossiler Brennstoffe

Braunkohle

Vorteile:

  • Aufgrund ihrer Lage dicht unter der Erdoberfläche lässt sie sich leicht und billig abbauen.

Nachteile:

  • Da sie einen sehr hohen Schwefelgehalt hat, lässt sich Braunkohle nicht so sauber verbrennen und trägt dadurch erheblich zur Umweltverschmutzung bei.
  • Die Verbrennung von Braunkohle ist nach der nur selten genutzten Torfverstromung die Kohlendioxidintensivste Art der Stromerzeugung.
  • Der Braunkohlebergbau im Tagebau greift tief in das Leben der Bewohner dieses Gebietes ein. Die Kohleflöze dehnen sich über viele Quadratkilometer aus, wo Dörfer, Straßen und Höfe liegen. Sie müssen dem langsam vorrückenden Tagebau weichen. (siehe auch: Liste abgebaggerter Ortschaften)
  • Wegen ihrer bröseligen Beschaffenheit sowie des hohen Wassergehalts, wie auch auf Grund des immer ungünstiger werdenden Verhältnisses von Abraum zu Braunkohle fallen die Transportkosten immer stärker ins Gewicht, so dass rohe Braunkohle nur in ortsnahen Kraftwerken verfeuert wird.
  • Braunkohle hat einen bedeutend niedrigeren Brennwert als Steinkohle

Erdöl

Vorteile:

  • Öl liefert uns eine Anzahl unterschiedlicher Kraftstoffe, von denen jeder für die moderne Zivilisation von Bedeutung ist.
  • Öl ist im Vergleich zur Kohle ein besserer und wirkungsvollerer Brennstoff, da es bei höheren Temperaturen verbrennt. Man braucht weniger Öl als Kohle, um dieselbe Hitze zu erzeugen.
  • Öl ist außerdem ein bequemerer Brennstoff als Kohle. Da wegen des höheren Wirkungsgrades des Öls geringere Mengen gebraucht werden, muss auch weniger Öl transportiert werden. Durch das Vorkommen als Flüssigkeit lässt sich Öl wesentlich einfacher als Kohle, z.B. durch Rohre und Schläuche bewegen.
  • Zudem verursacht Öl eine geringere Luftverschmutzung als Kohle, da es sauberer verbrennt.

Nachteile:

  • Die Erdölvorräte unserer Erde sind begrenzt und sie können nicht erneuert werden. Sie werden also in absehbarer Zeit erschöpft sein.
  • Die Erdölförderländer sind enorm reich und mächtig geworden; sie können die Preise bestimmen und die Fördermengen festlegen. Auf diese Weise üben sie einen großen Einfluss auf Wirtschaft und Politik aus.
  • Es sind sehr umfangreiche und kostspielige Untersuchungen notwendig, um neue Ölquellen aufzuspüren. Selbst auf Ölfeldern, auf denen bereits gebohrt wird, können sich vier von fünf Bohrlöchern als trocken erweisen.
  • Verwerfungen und Schichten aus nichtbohrbarem Gestein verursachen weit schwierigere Probleme als die Tiefe.
  • Umweltbelastungen: Es kommt immer wieder zu Havarien von Öltankern, bei denen z. T. zig Tausende von Tonnen Öl ins Meer fließen. Dabei kommt es zu einer Ölpest. Auch Raffinerien verursachen große Probleme. Durch die Entschwefelung des Öls gelangt gefährliches Schwefeldioxid in die Atmosphäre, das Sauren Regen verursacht. Zudem werden Flüsse und Seen von den Abwässern der Raffinerien geschädigt.

Erdgas

Vorteile:

  • Gas wird immer mehr Kohle und Erdöl vorgezogen, weil es einen hohen Wirkungsgrad hat, nahezu ohne Rückstände verbrennt und die Kraftwerke zumeist gut regelbar sind. Es gilt als umweltfreundlichster fossiler Brennstoff und ist rußfrei. Es kann für viele Zwecke eingesetzt werden und ist ein wichtiger Rohstoff für die Herstellung vieler Produkte.

Nachteile:

  • Bevor Gas transportiert werden kann, muss sein Volumen durch Kompression und Kühlung reduziert werden.
  • Erdgas kann mit Luft explosive Gemische bilden (siehe Gasexplosion).

Subventionen

Im Oktober 2011 vermeldete die Internationale Energieagentur, dass im Jahr 2010 die fossilen Energien weltweit mit insgesamt ca. 500 Mrd. Dollar subventioniert wurden. Verglichen mit 2009 stiegen die Subventionen um ca. 110 Mrd. Dollar. Diese Subventionen wirken sich laut IEA negativ auf die ökonomische Leistungsfähigkeit der Staaten aus. So könne eine zielgerichtete Abschaffung der Subventionen große ökonomische wie ökologische Vorteile haben und die Energiesicherheit der einzelnen Staaten deutlich stärken.[8] Der Chefökonom der IEA, Fatih Birol, geht davon aus, dass mit einer Abschaffung dieser Subventionen bis 2015 pro Jahr die Emission von ca. 750 Millionen Tonnen Kohlendioxid eingespart werden könnte. Bis zum Jahr 2035 könnten möglicherweise bis zu 2,6 Mrd. Tonnen CO2-Ausstoß vermieden werden, was etwa der Hälfte der Einsparungen wäre, die nötig wären, um das international vereinbare 2-Grad-Ziel zu erreichen.[9]

Im Jahr 2011 stieg die Subvention laut IEA auf 532 Mrd. US-Dollar. Dies sei sechsmal so hoch wie die globale Förderung für Erneuerbare Energien, so der designierte Präsident des Vereins Deutscher Ingenieure, Udo Ungeheuer.[10]

Preisentwicklung

Preisentwicklung in Deutschland nach BDEW (Bundesverband der Energie- und Wasserwirtschaft) in Euro/tSKE[11]

Jahr Importrohöl Importerdgas Erdgas (Industrie) Erdgas (Kraftwerke) Drittlandskohle (Kraftwerkskohle) Drittlandskohle (Kokskohle)
1995 65 61 118 99 39 42
1996 82 59 120 103 38 44
1997 88 70 130 109 42 51
1998 60 62 124 103 37 50
1999 83 53 118 105 34 47
2000 156 93 158 129 42 51
2001 141 123 202 159 53 60
2002 130 105 182 151 45 ? ·
2003 133 111 200 167 40 53
2004 151 105 194 176 55 61
2005 211 142 226 206 65 91
2006 260 191 273 220 62 104
2007 260 180 260 209 68 94
2008 348 237 324 252 112 142
2009 218 198 301 239 79 151
2010 297 185 281 222 85 160
2011 400 230 327 256 106 ?
2012 441 263 356 260 93 ?

Siehe auch

Weblinks

  • Energie Übersicht Energie Übersicht - Eine visuelle Überprüfung der Förder- und Verbrauchs Trends der Nationen; Daten aus der BP Statistical Review 2009. (deutsch, englisch)

Einzelnachweise

  1. Internationale Energieagentur: Key World Energy Statistics 2007. S. 6.
  2. Edward Anthony Wrigley, Energy and the English Industrial Revolution, Cambridge University Press 2010, S. 101.
  3. Valentin Crastan, Elektrische Energieversorgung 2, Berlin Heidelberg 2012, S. 5.
  4. Intergovernmental Panel on Climate Change (2007): IPCC Fourth Assessment Report - Working Group I Report on „The Physical Science Basis“.
  5. World Energy Outlook 2010 Zusammenfassung. Abgerufen am 6. Oktober 2011 (PDF).
  6. Die neue Gefahr für den Markt?. In: taz, 21. April 2013. Abgerufen am 28. April 2013.
  7. Unburnable Carbon 2013: Wasted capital and stranded assets (PDF; 3,4 MB). Internetseite von Carbon Tracker. Abgerufen am 28. April 2013.
  8. OECD and IEA recommend reforming fossil-fuel subsidies to improve the economy and the environment. Internationale Energieagentur. Abgerufen am 4. Oktober 2011.
  9. Phasing out fossil fuel subsidies 'could provide half of global carbon target'. In: The Guardian, 19. Januar 2012. Abgerufen am 21. Januar 2012.
  10. VDI-Präsident: Geringer Wettbewerb treibt Strompreise in die Höhe. In: Handelsblatt, 23. November 2012. Abgerufen am 23. November 2012.
  11. Energiewirtschaftliche Entwicklung in Deutschland (PDF; 1,1 MB). BDEW. Abgerufen am 1. Juni 2013.
Dieser Artikel basiert ursprünglich auf dem Artikel Fossile Energie aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.