Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Distickstoffmonoxid

Aus Jewiki
Zur Navigation springen Zur Suche springen
Strukturformel
Struktur von Distickstoffmonoxid
Allgemeines
Name Distickstoffmonoxid (INN)
Andere Namen
  • Lachgas
  • Distickstoffoxid
  • Stickoxydul
  • Azo-oxid
  • E 942
Summenformel N2O
CAS-Nummer 10024-97-2
PubChem 948
ATC-Code

N01AX13

Kurzbeschreibung

farbloses Gas mit süßlichem Geruch[1]

Arzneistoffangaben
Wirkstoffklasse

Analgetikum

Eigenschaften
Molare Masse 44,01 g·mol−1
Aggregatzustand

gasförmig

Dichte

1,85 kg·m−3[1]

Schmelzpunkt

−90,8 °C[1]

Siedepunkt

−88,5 °C[2]

Dampfdruck

5,06 MPa 20 °C)[1]

Löslichkeit
Dipolmoment

0,16083 D[4] (5,365 · 10−31 C · m)

Brechungsindex

1,000516 (0 °C, 101,325 kPa)[5]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [1]
03 – Brandfördernd 04 – Gasflasche

Gefahr

H- und P-Sätze H: 270​‐​280
P: 244​‐​220​‐​370+376​‐​403 [1]
EU-Gefahrstoffkennzeichnung [6][2]
Brandfördernd
Brand-
fördernd
(O)
R- und S-Sätze R: 8
S: 9​‐​17
MAK
  • DFG: 180 mg·m−3[1]
  • Schweiz: 100 ml·m−3 bzw. 182 mg·m−3[7]
Treibhauspotential

298 (bezogen auf 100 Jahre)[8][9]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Distickstoffmonoxid, allgemein bekannt unter dem Trivialnamen Lachgas, ist ein farbloses Gas aus der Gruppe der Stickoxide. Die chemische Summenformel für das Gas ist N2O. In älterer Literatur wird Distickstoffoxid auch als Stickoxydul beziehungsweise Stickoxidul bezeichnet.

Geschichte

Lachgas wurde erstmals 1772 von dem englischen Chemiker Joseph Priestley (1733–1804) synthetisiert. Die Entdeckung der psychoaktiven und insbesondere schmerzstillenden Wirkung geht zurück auf den englischen Chemiker Humphry Davy (1778–1829), der ab dem Jahr 1797 begann, mit Selbstversuchen die psychoaktiven Effekte des Lachgases zu erforschen.

Der erste Zahnarzt, der Lachgas als Narkosemittel verwendete, war Horace Wells in Hartford (Connecticut). Er setzte es ab 1844 für Zahnextraktionen und Dentalbehandlungen ein, nachdem er dessen schmerzstillende Wirkung zufällig bei einer Vergnügungsanwendung beobachtet hatte, wie sie zu seiner Zeit auf Jahrmärkten üblich war. Seit dem Jahre 1868 wird Lachgas als Anästhetikum zur Durchführung klinischer Operationen eingesetzt.[10]

Namensherkunft

Für die Herkunft des Namens Lachgas gibt es unterschiedliche Vermutungen. Eine der Vermutungen besteht darin, dass der Name von einer Euphorie herrührt, die beim Einatmen entstehen kann, sodass der Konsument lacht. Weitere Vermutungen sind, dass sich durch Einatmung des Gases Zwerchfellkrämpfe einstellen können, die von Außenstehenden als Lachen interpretiert werden, jedoch nicht euphorischer Natur sind.

Herstellung

Die Herstellung erfolgt durch kontrollierte thermische Zersetzung von chloridfreiem Ammoniumnitrat (NH4NO3)[11] oder durch Erhitzen von einer Mischung aus Ammoniumsulfat und Natriumnitrat. Die Temperatur darf bei beiden Darstellungswegen jedoch nicht höher als 300 °C steigen, da es sonst zu einem explosiven Zerfall von Ammoniumnitrat kommen kann.

Vorkommen

Lachgas wird vor allen Dingen durch natürliche Prozesse, zum Beispiel durch Nitrifikation, in die Atmosphäre freigesetzt.[12] Vom Menschen wird Lachgas nicht nur durch Verbrennung, sondern auch indirekt durch intensive Landwirtschaft freigesetzt.

Quellen für Distickstoffmonoxid[12] globale Emission
[106 t/a]
natürliche Quellen 6,6–12,2
• Ozeane/Seen 2,0–4,0
• natürliche Böden 4,6–8,2
anthropogene Quellen 1,4–6,5
• Verbrennung von Biomasse 0,2–2,4
• Einsatz von künstlichen Düngern (Böden und Grundwasser) 1,0–3,6
alle Quellen[Anm. 1] 8,9–18,7
  1. Weitere mögliche Quellen sind photochemische Reaktionen in der Stratosphäre und Troposphäre sowie die Bildung von Distickstoffmonoxid durch Katalysatoren.

Stickstoffdünger wird unter bestimmten Bedingungen in Distickstoffmonoxid umgewandelt. Dabei wird normalerweise N2O im Boden enzymatisch abgebaut. Bei dem ablaufenden biochemischen Prozess spielt das kupferhaltige Enzym Distickstoffmonoxid-Reduktase eine wichtige Rolle, da es N2O zu N2 umsetzt. Dieses Enzym ist gegenüber Sauerstoff allerdings hochgradig empfindlich und fällt in der Reaktionskette häufig aus. Das ist der Grund dafür, dass große Mengen an N2O aus gedüngten Ackerflächen freigesetzt werden.[13]

Neuere Untersuchungen haben gezeigt, dass auch Maßnahmen zur Senkung der Stickoxidemissionen aus Verbrennungsprozessen zu einer zum Teil erheblichen Zunahme der Lachgasemissionen führen. Zum Beispiel findet man bei Kraftwerken mit zirkulierender Wirbelschichtfeuerung, die verfahrensbedingt geringe Stickoxidemissionen aufweisen, sehr große Lachgasemissionen. Ähnliches gilt bei Kraftfahrzeugen mit geregeltem Drei-Wege-Katalysator, über deren Auswirkungen auf das globale N2O-Budget noch Unsicherheit besteht. Da der Anteil der Katalysatorfahrzeuge weltweit weiterhin ansteigen wird, kann in den nächsten Jahren beim Einsatz der heutigen Dreiwegekatalysatoren mit einem deutlichen Anstieg der Kfz-bedingten N2O-Emissionen gerechnet werden.

In der chemischen Industrie ist die Adipinsäuresynthese (Polyamid-Vorprodukt) ein Lachgas freisetzender Prozess, der im Treibhausbudget der Unternehmen gelistet wird und auch ein Ziel von Reduktionsanstrengungen ist.

Lachgas kann sich auch, unter bestimmten Bedingungen, an Festkörperoberflächen unter Normalbedingungen bilden. Erstmals wurde dies an einem Salzsee in der Antarktis beobachtet.[14]

Gegenüber all diesen Quellen steht als Senke insbesondere der photochemische Abbau in der Stratosphäre mit etwa 20,5·106 t/a gegenüber.[12]

Die Mengen, die zusätzlich durch Aufnahme in Böden und von aquatischen Mikroorganismen abgebaut werden, sind nicht bekannt.

Eigenschaften

Lachgas ist in kaltem Wasser gut löslich: Bei 0 °C löst sich das Gas im Volumenverhältnis 1 : 1,305 in flüssigem Wasser, bei 25 °C immer noch im Verhältnis 1 : 0,596[15]. Aus neutralen wässrigen Lösungen lässt sich bei tiefen Temperaturen ein kristallines Gashydrat ausscheiden, in dem auf jedes N2O-Molekül 5,75 Wassermoleküle kommen. Unter erhöhtem Druck weist Lachgas sehr gute Löslichkeit in Fetten auf.

Lachgas ist nicht brennbar, kann aber andere Stoffe oxidieren. Daher wirkt es brandfördernd. Kohle, Schwefel und Phosphor brennen in Lachgas wie in Sauerstoff. So kann man die Bildung von Distickstoffmonoxid in einer Probe mit der Glimmspanprobe nachweisen. Um auch andere Stoffe zu oxidieren, benötigt es eine deutlich höhere Temperatur als bei einer Reaktion mit Sauerstoff. Da N2O eine metastabile Verbindung ist, zerfällt es bei ca. 600 °C in seine Elemente:

.

N2O ist ein Treibhausgas. Durch sein Absorptionsspektrum trägt es dazu bei, ein sonst zum Weltall hin offenes Strahlungsfenster zu schließen. Mit einer mittleren atmosphärischen Verweilzeit von 114 Jahren und einem relativ hohen molekularen Treibhauspotenzial von 298 (bezieht sich auf einen Betrachtungshorizont von 100 Jahren) ist es ein klimarelevantes Gas.[8] Sein Beitrag zum anthropogenen Treibhauseffekt beträgt heute etwa 6 %. Distickstoffoxid hat mittlerweile die Fluorchlorkohlenwasserstoffe (FCKW) als bedeutendste Quelle ozonschädlicher Emissionen des 21. Jahrhunderts abgelöst.[16] Dies wird zum einen auf die Zunahme der anthropogenen N2O-Produktion u. a. durch die vermehrte Herstellung von Biokraftstoff aus Biomasse und den Einsatz von Kunstdünger, vor allem aber auch auf die drastische Senkung der FCKW-Emissionen zurückgeführt. Letzteres kann als Erfolg des Montreal-Protokolls (über Stoffe, die zu einem Abbau der Ozonschicht führen) gewertet werden. In diesem völkerrechtlichen Vertrag des Umweltrechts, der seit 1987 den Ausstoß ozonschädigender Stoffe einschränkt, findet Lachgas jedoch keine Erwähnung.[17]

N2O trägt zum Ozonabbau bei:[9] Die UV-induzierte Spaltung von Ozon in ein freies Sauerstoffatom und ein Molekül O2 führt in der unteren Stratosphäre zu einer Reihe von chemischen Prozessen, in denen Methan, Wasserdampf, molekularer Wasserstoff und Stickoxide oxidiert werden. Dabei gehen die Stickoxide vom N2O zunächst in Stickstoffmonoxid NO, dann Stickstoffdioxid NO2 über. Wasser geht über in die Radikale •OH (Hydroxyl-Radikal) und •O2H. Für die Wasserstoffverbindungen endet hier die Oxidationskette, während sie für die Stickstoffverbindungen noch weitergehen kann zum NO3 und N2O5.

Das beim Abbau von Lachgas in der Stratosphäre zum Teil gebildete NO kann Ozon abbauen:

Ein Teil des NO2 kann durch Reaktion mit Sauerstoffatomen NO zurückbilden, so dass in der Summe die Ozonabbaureaktion katalysiert wird.

Lachgas ist als Lebensmittelzusatzstoff unter der Bezeichnung E 942 als Treibgas, beispielsweise für Schlagsahne, zugelassen.

Das Lachgas ist dem annähernd gleichschweren, isoelektronischen Kohlendioxid in seinen physikalischen Eigenschaften wie der Dichte der kondensierten Flüssigkeit oder Schmelz- und Siedepunkt sehr ähnlich.

Thermodynamik

Verwendung

Mobiles System zur Applikation eines N2O-Sauerstoff-Gemisches
  • In der Medizin wird Lachgas als analgetisch (gegen den Schmerz) wirkendes Gas zu Narkosezwecken benutzt oder in fixer Kombination von 50 % Lachgas und 50 % Sauerstoff (MEOPA) zur Schmerzbehandlung für kurze, mäßig schmerzhafte chirurgische Eingriffe. Eine weite Verbreitung hat es außerdem als sogenannte titrierbare Lachgas-Sedierung in der Zahnmedizin erlangt. Es ist eines der ältesten und ein relativ nebenwirkungsarmes Narkosemittel. Unter Anwendung von N2O kann es zur Störung der Wirkung von Vitamin B12 und Folsäure kommen und damit zu den Folgen einer perniziösen Anämie. Um eine wirkungsvolle Konzentration von 70 % zu erreichen, muss es zusammen mit reinem Sauerstoff verabreicht werden. Es gilt als relativ schwaches Anästhetikum und wird hauptsächlich unterstützend eingesetzt. In der modernen Anästhesie wird die Wirkung des Lachgases durch Zugabe anderer Narkosemittel optimiert. Vorteilhaft ist, dass das Gas in der Narkose rasch an- und abflutet, (geringer Blut/Gas-Verteilungskoeffizient) die Narkose dadurch gut steuerbar ist und keine oder geringe Atemdepression auftritt. Das Gas wird hauptsächlich wieder über die Lungen ausgeschieden, ein geringer Teil diffundiert durch die Haut.[18] Problematisch kann die Diffusion von Lachgas in luftgefüllte Körperhohlräume werden, hierbei kann es zur Diffusionshypoxie in der Lunge kommen. Dabei verdrängt Lachgas den Sauerstoff aus den Lungenbläschen. Dies kann durch Sauerstoffinhalation vermieden werden. Der medizinische Gebrauch von Lachgas als Narkosemittel ist in den letzten Jahren rückläufig.
  • In der Zahnmedizin ist Lachgas seit Jahrzehnten ein bewährtes Sedierungsmittel (Beruhigungsmittel), das vor allem bei Kindern und ängstlichen Patienten, aber auch bei starkem Würgereiz Anwendung findet. Nebenwirkungen sind bei korrekter Verabreichung selten.
  • In der Nahrungsmitteltechnik wird Lachgas aufgrund seiner guten Fettlöslichkeit unter Druck als Treibgas benutzt, vorzugsweise für Milchprodukte, zum Beispiel zum Aufschäumen (statt Schlagen) von Schlagsahne.
  • In der Drogenszene findet Lachgas wegen seiner dissoziativen Wirkung und der leichten Verfügbarkeit Verwendung. Der Rausch dauert etwa 30 Sekunden bis 3 Minuten an. Es kommt zu dissoziativen Effekten, starker Veränderung der Geräuschwahrnehmung (Echo, Verzerrung), Kribbeln in den Gliedmaßen, Entspannung der Muskeln und starkem Wohlempfinden, mitunter auch Euphorie. Bei häufigem Konsum besteht die Gefahr des Vitamin-B12-Mangels. Wiederholt kam es bei dieser missbräuchlichen Anwendung auch zu Todesfällen (siehe Abschnitt Gefahren).[19]
Lachgasbehälter an einem Motorrad
  • In der Antriebstechnik, etwa bei PKW, wird Distickstoffmonoxid zur Steigerung der Motorleistung von Ottomotoren verwendet, da es mehr Sauerstoff enthält als Luft. Diese sogenannte Lachgaseinspritzung erfordert nur relativ geringe konstruktive Änderungen am Motor und kann seine Leistung kurzfristig um etwa 20 bis 50 % steigern. Das Distickstoffmonoxid wird dabei aus Druckbehältern in den Ansaugtrakt geblasen. Dieses Tuning ist vor allem in den USA verbreitet, seine Verwendung im öffentlichen Straßenverkehr ist aber sowohl dort als auch in Deutschland verboten (mit Ausnahme einer Anlage mit ABE) und den meisten anderen Ländern nur eingeschränkt erlaubt. Die bekanntesten Hersteller von Lachgaseinspritzungen sind NOS, NX und Venom sowie ZEX. Im Zweiten Weltkrieg wurden auch Flugmotoren auf diese Weise in ihrer Leistung gesteigert (siehe auch GM-1).
  • In der Raketentechnik wird Lachgas, etwa in Hybridraketen wie dem SpaceShipOne, als Oxidator eingesetzt. Der Vorteil liegt darin, dass es sich ohne Kühlung durch Druck verflüssigen lässt. Daher benötigt man für den Einsatz in solchen Triebwerken nur ein Drosselventil, jedoch keine Kraftstoffpumpe oder aufwendige Kryotechnik.
  • In der Atomabsorptionsspektrometrie (AAS), einem Verfahren der chemischen Analyse vieler Elemente durch Strahlungsabsorption nach starker Erwärmung, wird in der Flammen-AAS Lachgas anstelle von Luft in einer Acetylen-Flamme zur Erzeugung höherer Temperaturen (2800 °C) verwendet.
  • In der Katalyseforschung wird Lachgas bei der reaktiven Frontalchromatographie angewendet, um die katalytisch wirksame Kupferoberfläche zu bestimmen.

Physiologie

Das Gas ist farblos, geruchlos und geschmacklos; teilweise wird über einen leicht süßlichen Geschmack beim Einatmen berichtet. Es wirkt schmerzstillend und schwach narkotisch. Analgetische (schmerzstillende) Effekte treten ab einer Konzentration von etwa 20 Prozent Distickstoffmonoxid in der Atemluft auf. Lachgas oxidiert im Körper Vitamin B12, welches dann als Co-Enzym dem Enzym Methionin-Synthase nicht mehr zur Verfügung steht.[20] So kommt es bei einer Anwendung von Lachgas von über sechs Stunden zu einer Funktionsabnahme der Methionin-Synthase, die für die Produktion vieler wichtiger Eiweißbausteine wichtig ist.[21] Die Wirkung von Lachgas ist nur kurz, bereits nach ungefähr 15 Minuten sind keine Wirkungen mehr wahrnehmbar. Lachgas wird auch heute noch aufgrund der schmerzstillenden Wirkung in der Anästhesie zur Durchführung einer Vollnarkose dem Gasgemisch beigefügt, da es den Verbrauch der inhalativen Anästhetika stark reduziert.

Vor dem Hintergrund alternativer Narkoseverfahren, verbesserter Gerätetechnik (z. B. low-flow-Anästhesie) und erhöhter Vigilanz bezüglich möglicher Umweltbelastungen (Treibhausgas) wird seit einigen Jahren weniger Lachgas in der Anästhesie verwendet.[22] Viele Krankenhäuser sind zwischenzeitlich aus dem Gebrauch von Lachgas ausgestiegen und nutzen in der zentralen Gasversorgung nur noch Druckluft und Sauerstoff. Aus medizinischer Sicht spricht jedoch weiterhin nichts gegen die Verwendung von Lachgas zur Narkose.[23][24]

Gefahren

Bei der Verwendung von großen Gasflaschen in geschlossenen Räumen besteht Erstickungsgefahr. Lachgas ist brandfördernd (Vergleiche: Glimmspanprobe). Besondere Gefahren bestehen beim Missbrauch als Droge: Inhaliert man Lachgas pur – z. B. aus abgefüllten Ballons –, können als Folgen Dysphorie, Verwirrtheit, Übelkeit, Kopfschmerzen und Blutdruckabfall auftreten. Bei hohen Mengen kommt es zu einer Unterversorgung mit Sauerstoff (Hypoxämie) in deren Folge Kreislaufstillstand, Hirnschäden und der Tod möglich sind.[25] Falls Lachgas direkt aus dem Gasbehälter eingeatmet wird, kann es zu Erfrierungserscheinungen an Lippen, Kehlkopf und Bronchien aufgrund der Verdunstungskälte des unter Druck verflüssigten Gases kommen. Es besteht eine erhöhte Verletzungsgefahr durch Stürze beim Verlust des Bewusstseins. Der wiederholte Missbrauch von Lachgas kann zu Gesundheitsschäden in Form neurologischer Symptome wie Gangstörungen, Taubheitsgefühlen oder Impotenz führen.

Weblinks

 Commons: Distickstoffmonoxid – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 Eintrag zu CAS-Nr. 10024-97-2 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 19. Oktober 2012 (JavaScript erforderlich).
  2. 2,0 2,1 2,2 Sicherheitsdatenblätter, praxair.de
  3. 3,0 3,1 Stickstoffoxide. In: Römpp Online. Georg Thieme Verlag, abgerufen am 1. Juni 2014.
  4. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Dipole Moments, S. 9-51.
  5. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Index of Refraction of Gases, S. 10-254.
  6. Seit dem 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  7. SUVA: Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.
  8. 8,0 8,1 P. Forster, P., V. Ramaswamy u. a.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/ New York 2007, S. 212, (PDF)
  9. 9,0 9,1 Bedrohte Ozonschicht: Lachgas ist größeres Problem als FCKW. In: Spiegel Online. 28. August 2009, abgerufen am 13. April 2015.
  10. Geschichte im Lachgas-Lexikon
  11. G. Brauer (Hrsg.): Handbook of Preparative Inorganic Chemistry. 2. Auflage. vol. 1, Academic Press, 1963, S. 484–485.
  12. 12,0 12,1 12,2 Helmut Sitzmann: RÖMPP – Stickstoffoxide – Georg Thieme Verlag KG. In: roempp.thieme.de. , abgerufen am 25. September 2015.
  13. Rudolf-Werner Dreier: Schwefelatome im Enzym. Albert-Ludwigs-Universität Freiburg im Breisgau, Pressemitteilung vom 15. August 2011 beim Informationsdienst Wissenschaft (idw-online.de), abgerufen am 13. April 2015.
  14. Antarktis: Lachgasfund an Salzsee verblüfft Forscher. In: Spiegel Online. 26. April 2010, abgerufen am 13. April 2015.
  15. A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 101. Auflage. de Gruyter, Berlin 1995, ISBN 3-11-012641-9, S. 689 ([1] in der Google Buchsuche).
  16. A. R. Ravishankara u. a.: Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century.. In: Science. 2009 PMID 19713491.
  17. Nora Schlüter: Lachgas ist Ozonkiller Nummer Eins. In: Financial Times Deutschland. 28. August 2009, archiviert vom Original am 12. Januar 2010; abgerufen am 24. November 2012.
  18. Gottfried Alber in: Krankheiten der Katze. Abschnitt 24.5 – Inhalationsanästhesie, Unterabschnitt 24.5.2.2 – Lachgas, S. 631.
  19. 'Laughing gas' teenager dies after party in Bexley. In: BBC News. 26. Juli 2015, abgerufen am 26. Juli 2015 (english).
  20. R. D. Sanders, J. Weimann, M. Maze: Biologic effects of nitrous oxide: a mechanistic and toxicologic review. In: Anesthesiology. Band 109, Nummer 4, Oktober 2008, S. 707–722, doi:10.1097/ALN.0b013e3181870a17. PMID 18813051 (Review).
  21. J. Weimann: Toxicity of nitrous oxide. In: Best practice & research. Clinical anaesthesiology. Band 17, Nummer 1, März 2003, S. 47–61. PMID 12751548 (Review).
  22. J. Schulte Am Esch, J. Scholz: [Nitrous Oxide – End of an Era – a Specific German Discussion]. In: Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS. Band 36, Nummer 10, Oktober 2001, S. 597–598, doi:10.1055/s-2001-17680. PMID 11592018.
  23. European Society of Anaesthesiology task force on the use of nitrous oxide in clinical anaesthetic practice: The current place of nitrous oxide in clinical practice: An expert opinion-based task force consensus statement of the European Society of Anaesthesiology. In: European Journal of Anaesthesiology. Band 32, Nummer 8, August 2015, S. 517–520. PMID 26244467.
  24. P. S. Myles, K. Leslie, M. T. Chan, A. Forbes, P. J. Peyton, M. J. Paech, W. S. Beattie, D. I. Sessler, P. J. Devereaux, B. Silbert, T. Schricker, S. Wallace; ANZCA Trials Group for the ENIGMA-II investigators: The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): a randomised, single-blind trial. In: The Lancet. Band 384, Nummer 9952, Oktober 2014, S. 1446–1454. PMID 25142708.
  25. Partydroge Lachgas. In: medical-tribune.de. 11. Januar 2016, abgerufen am 11. Januar 2016.
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!
Dieser Artikel basiert ursprünglich auf dem Artikel Distickstoffmonoxid aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.