Jewiki unterstützen. Jewiki, die größte Online-Enzyklopädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

(Spendenkonto siehe Impressum). Vielen Dank für Ihr Engagement!

Alex Kontorovich

Aus Jewiki
Wechseln zu: Navigation, Suche
Datei:Kontorovich 2011.jpg
Alex Kontorovich, Oberwolfach 2011

Alex V. Kontorovich (* 22. September 1980 in Russland) ist ein US-amerikanischer Mathematiker, der sich mit analytischer Zahlentheorie, Automorphen Formen und Darstellungstheorie, L-Funktionen, harmonischer Analysis und homogener Dynamik befasst.

Leben

Kontorovich studierte ab 1998 an der Princeton University unter anderem bei Jakow Sinai, wobei er auch Jazz- und Saxophonstudien belegte und 2002 den Bachelor-Abschluss in Mathematik erwarb) und an der Columbia University mit der Promotion bei Dorian Goldfeld (und Peter Sarnak) 2007 (The Hyperbolic Lattice Point Count in Infinite Volume with Applications to Sieves)[1]. 2007 bis 2010 war er Tamarkin Assistant Professor an der Brown University, 2010/11 Assistant Professor an der State University of New York at Stony Brook und danach Assistant Professor und ab 2014 Associate Professor an der Yale University. Ab 2014 ist er Associate Professor an der Rutgers University.

Er war Gastwissenschaftler in Harvard, an der ETH Zürich und am Institute for Advanced Study (2009-2010, 2013-2014).

Werk

2011 bewies er mit Jean Bourgain eine Vermutung von Zaremba von 1971 über Kettenbrüche, ob jede natürliche Zahl als Nenner einer rationalen Zahl vorkommt, deren Kettenbruchentwicklung Teilzähler hat aus einer nach oben beschränkten Menge natürlicher Zahlen (z.B. aus der Menge (1,2,3,4,5)). Zaremba vermutete, dass dies so ist und Kontorovich und Bourgain bewiesen dies.

2014 erhielt er den Levi-L.-Conant-Preis[2] für den Aufsatz From Apollonius to Zaremba: Local-global phenomena in thin orbits. Darin schlug er überraschende Verbindungen zwischen zahlentheoretischen und geometrischen Problemen. Das zahlentheoretische Problem ist das oben erwähnte Zaremba-Problem. Bei dem geometrischen Problem geht es um von ihm sogenannten ganzzahligen Soddy-Kugelpackungen (benannt nach dem Chemiker Frederick Soddy), Verallgemeinerungen von Apollonischen Kreispackungen auf drei Dimensionen, wobei die Krümmungen ganzzahlig sind. Kontorovich bewies, dass genügend große natürliche Zahlen, die gewissen Kongruenzbedingungen des Problems genügen (zulässig sind) als Krümmung in einer solchen Kugelpackung darstellbar sind.

Er befasst sich auch mit dem Collatz-Problem (3x+1 Problem) und entwickelte stochastische Modelle zur Vorhersage der damit verbundenen Dynamik mit Jeffrey Lagarias[3]. Hier und in einem Problem der Verteilung der Werte von L-Funktionen zeigte er mit Steven J. Miller die Gültigkeit von Benfords Gesetz.[4]

Sonstiges

2013 bis 2015 ist er Sloan Fellow.

Er ist auch in verschiedenen Klezmer-Musik-Bands als Saxophonist (und Klarinettist) aktiv und komponiert. Er ist Gründungsmitglied der Klez Dispensers und spielte mit den Klezmatics. Kontorovich spielt auch Jazz[5] und klassische Musik.

Er ist US-amerikanischer Staatsbürger.

Schriften

  • From Apollonius to Zaremba: Local-global phenomena in thin orbits, Bulletin AMS, Bd. 50, 2013, S. 187–228, Arxiv
  • mit Jean Bourgain: On the Local-Global Conjecture for Apollonian Gaskets, Inventiones Mathematicae, Band 196, 2014, S.589-650, Arxiv
  • mit Jean Bourgain: On Zaremba´s Conjecture, Annals of Mathematics, Band 180, 2014, S. 137-196, Arxiv Preprint, 2011
  • mit Hee Oh: Apollonian Packings and Horospheres on Hyperbolic 3-manifolds, Journal of the AMS, Band 24, 2011, S. 603-648, Arxiv
  • mit Hee Oh: Almost Prime Pythagorean Triples in Thin Orbits, J. Reine Angew. Math., Band 667, 2012, S. 89-131, Arxiv

Weblinks

Einzelnachweise

  1. Alex Kontorovich im Mathematics Genealogy Project (englisch)
  2. Levi Conant Prize für Kontorovich, Notices AMS April 2014, pdf
  3. Kontorovich, Lagarias, Stochastic Models for the 3x+1 and 5x+1 Problems, in: The Ultimate Challenge: The 3x+1 problem, Amer. Math. Soc.: Providence 2010, S. 131--188
  4. Kontorovich, Steven J. Miller: Benford's Law, Values of L-functions and the 3x+1 problem, Acta Arith., Band 120, 2005, S. 269-297, Arxiv
  5. Artikel über Zaremba in All About Jazz


Dieser Artikel basiert ursprünglich auf dem Artikel Alex Kontorovich aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.