Jewiki unterstützen. Jewiki, die größte Online-Enzy­klo­pädie zum Judentum.

Helfen Sie Jewiki mit einer kleinen oder auch größeren Spende. Einmalig oder regelmäßig, damit die Zukunft von Jewiki gesichert bleibt ...

Vielen Dank für Ihr Engagement! (→ Spendenkonten)

How to read Jewiki in your desired language · Comment lire Jewiki dans votre langue préférée · Cómo leer Jewiki en su idioma preferido · בשפה הרצויה Jewiki כיצד לקרוא · Как читать Jewiki на предпочитаемом вами языке · كيف تقرأ Jewiki باللغة التي تريدها · Como ler o Jewiki na sua língua preferida

Ableitung (Logik)

Aus Jewiki
Zur Navigation springen Zur Suche springen

Eine Ableitung, oder Herleitung, oder Deduktion ist in der Logik die Gewinnung von Aussagen aus anderen Aussagen. Dabei werden Schlussregeln auf Prämissen angewandt, um zu Konklusionen zu gelangen. Welche Schlussregeln dabei erlaubt sind, wird durch das verwendete Kalkül bestimmt.

Beispiel: Aussagen- und Prädikatenlogik

Der Sequenzenkalkül beschäftigt sich mit der Ableitung von Sequenzen der Gestalt mit Hilfe der Sequenzenregeln. Zur Illustration nehmen wir die Herleitung des Satzes vom ausgeschlossenen Dritten. Die verwendeten Regeln werden in [1] beschrieben.

Damit wurde die folgende neue Sequenzenregel abgeleitet:

Sie kann nun genau wie die Grundregeln des Kalküls verwendet werden.

Die Ableitbarkeitsrelation und der Ableitbarkeitsoperator

Definition

Zur Formalisierung der Ableitbarkeit wird oft der Ableitungsoperator (auch Inferenzoperation) verwendet, der über die Ableitungsrelation (auch Inferenzrelation) definiert wird.

Wenn - gemäß den Regeln eines konkreten Kalküls - der Ausdruck (die Konklusion oder die Konsequenz) aus der Menge (den Prämissen) in endlich vielen Schritten abgeleitet werden kann, schreibt man dafür ; hierbei ist die Ableitungsrelation.

Bei dieser Ableitbarkeitsrelation (auch Inferenzrelation) handelt es sich um eine Relation zwischen einer Menge von Aussagen, den Prämissen, und einer einzelnen Aussage, der Konklusion. ist dabei zu lesen als: " ist aus ableitbar".

Fügt man einer gegebenen Menge von Ausdrücken alle aus ableitbaren Ausdrücke hinzu (man sagt, man bilde den deduktiven Abschluss), so wird dadurch der Ableitungsoperator (auch Inferenzoperation) definiert:

Unterschiedliche Logiken definieren jeweils einen unterschiedlichen Ableitbarkeitsbegriff. So gibt es einen aussagenlogischen Ableitbarkeitsbegriff, einen prädikatenlogischen, einen Intuitionistischen, einen modallogischen usw.

Eigenschaften von Ableitungsoperatoren

Es gibt eine Reihe von Eigenschaften, die den meisten Ableitbarkeitsrelationen (zumindest den obengenannten) gemeinsam sind

  • Inklusion: (Jede Annahme ist auch eine Folgerung).
  • Idempotenz: Wenn und , dann (Durch Hinzunahme von Folgerungen zu den Annahmen erhält man keine neuen Folgerungen.)
  • Monotonie: Wenn , dann (Hinzufügen von Annahmen erhält die bisher möglichen Folgerungen.)
  • Kompaktheit; Wenn , dann gibt es eine endliche Menge mit , so dass . (Jede Folgerung aus einer unendlichen Annahmenmenge ist bereits aus einer endlichen Teilmenge zu erreichen.)

Aus den ersten drei dieser Eigenschaften lässt sich folgern, dass ein Hüllenoperator ist, d.h. eine extensive, monotone, idempotente Abbildung.

Quellen

Dieser Artikel basiert ursprünglich auf dem Artikel Ableitung (Logik) aus der freien Enzyklopädie Wikipedia und steht unter der Doppellizenz GNU-Lizenz für freie Dokumentation und Creative Commons CC-BY-SA 3.0 Unported. In der Wikipedia ist eine Liste der ursprünglichen Wikipedia-Autoren verfügbar.